Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Parish, James

  • Google
  • 11
  • 23
  • 172

University of Bath

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2023Multi-pulse atomic layer deposition of p-type SnO thin films12citations
  • 2021Evaluation of Sn(II) Aminoalkoxide Precursors for Atomic Layer Deposition of SnO Thin Films.4citations
  • 2021Tin(II) Ureide Complexes3citations
  • 2021Atomic layer deposition method of metal (II), (0), or (IV) containing film layercitations
  • 2019Aerosol-Assisted Chemical Vapor Deposition of ZnS from Thioureide Single Source Precursors22citations
  • 2019Aerosol-Assisted Chemical Vapor Deposition of ZnS from Thioureide Single Source Precursors22citations
  • 2019Synthetic, Structural and Computational Studies on Heavier Tetragen and Chalcogen Triazenide Complexes7citations
  • 2018Synthesis, Characterisation and Thermal Properties of Sn(II) Pyrrolide Complexes14citations
  • 2018Recent developments in molecular precursors for atomic layer deposition24citations
  • 2017Aerosol-Assisted chemical vapor deposition of cds from xanthate single source precursors47citations
  • 2016Aerosol-assisted CVD of SnO from stannous alkoxide precursors17citations

Places of action

Chart of shared publication
Johnson, Andrew L.
10 / 40 shared
Macmanus-Driscoll, Judith L.
1 / 28 shared
Gomersall, Daisy E.
1 / 1 shared
Sun, Zhuotong
1 / 3 shared
Flewitt, Andrew J.
1 / 5 shared
Niang, Kham M.
1 / 3 shared
Snook, Michael W.
2 / 2 shared
Hill, Michael S.
4 / 17 shared
Ahmet, Ibbi Y.
1 / 4 shared
Molloy, Kieran C.
2 / 12 shared
Wildsmith, Thomas
2 / 3 shared
Sullivan, Hannah
2 / 4 shared
Johnson, Andrew
1 / 2 shared
Hill, Michael
1 / 1 shared
Thongchai, Prem
2 / 2 shared
Kociok-Kohn, Gabriele
1 / 5 shared
Kociok-Köhn, Gabriele
2 / 38 shared
Fox, Mark
1 / 1 shared
Flanagan, Kerry
1 / 1 shared
Buckingham, Mark A.
1 / 4 shared
Catherall, Amanda L.
1 / 2 shared
Kingsley, Andrew L.
1 / 1 shared
Lowe, John P.
1 / 6 shared
Chart of publication period
2023
2021
2019
2018
2017
2016

Co-Authors (by relevance)

  • Johnson, Andrew L.
  • Macmanus-Driscoll, Judith L.
  • Gomersall, Daisy E.
  • Sun, Zhuotong
  • Flewitt, Andrew J.
  • Niang, Kham M.
  • Snook, Michael W.
  • Hill, Michael S.
  • Ahmet, Ibbi Y.
  • Molloy, Kieran C.
  • Wildsmith, Thomas
  • Sullivan, Hannah
  • Johnson, Andrew
  • Hill, Michael
  • Thongchai, Prem
  • Kociok-Kohn, Gabriele
  • Kociok-Köhn, Gabriele
  • Fox, Mark
  • Flanagan, Kerry
  • Buckingham, Mark A.
  • Catherall, Amanda L.
  • Kingsley, Andrew L.
  • Lowe, John P.
OrganizationsLocationPeople

article

Aerosol-Assisted Chemical Vapor Deposition of ZnS from Thioureide Single Source Precursors

  • Hill, Michael S.
  • Johnson, Andrew L.
  • Kociok-Köhn, Gabriele
  • Sullivan, Hannah
  • Thongchai, Prem
  • Parish, James
Abstract

<p>A family of 12 zinc(II) thoureide complexes, of the general form [{L}ZnMe], [{L}Zn{N(SiMe<sub>3</sub> )<sub>2</sub> }], and [{L}<sub>2</sub> Zn], have been synthesized by direct reaction of the thiourea pro-ligands<sup>i</sup> PrN(H)CS(NMe<sub>2</sub> ) H[L<sup>1</sup> ], CyN(H)CS(NMe<sub>2</sub> ) H[L<sup>3</sup> ],<sup>t</sup> BuN(H)CS(NMe<sub>2</sub> ) H[L<sup>2</sup> ], and MesN(H)CS(NMe<sub>2</sub> ) H[L<sup>4</sup> ] with either ZnMe<sub>2</sub> (1:1) or Zn{N(SiMe<sub>3</sub> )<sub>2</sub> }<sub>2</sub> (1:1 and 2:1) and characterized by elemental analysis, NMR spectroscopy, and thermogravimetric analysis (TGA). The molecular structures of complexes [{L<sup>1</sup> }ZnMe]<sub>2</sub> (1), [{L<sup>2</sup> }ZnMe]<sub>2</sub> ] (2), [{L<sup>3</sup> }ZnMe]<sub>âž</sub> (3), [{L<sup>4</sup> }ZnMe]<sub>2</sub> ] (4), [{L<sup>1</sup> }Zn{N(SiMe<sub>3</sub> )<sub>2</sub> }]<sub>2</sub> (5), [{L<sup>2</sup> }Zn{N(SiMe<sub>3</sub> )<sub>2</sub> }]<sub>2</sub> (6), [{L<sup>3</sup> }Zn{N(SiMe<sub>3</sub> )<sub>2</sub> }]<sub>2</sub> ] (7), [{L<sup>4</sup> }Zn{N(SiMe<sub>3</sub> )<sub>2</sub> }]<sub>2</sub> ] (8), [{L<sup>1</sup> }<sub>2</sub> Zn]<sub>2</sub> (9), and [{L<sup>4</sup> }<sub>2</sub> Zn]<sub>2</sub> (12) have been unambiguously determined using single crystal X-ray diffraction studies. Thermogravimetric analysis has been used to assess the viability of complexes 1-12 as single source precursors for the formation of ZnS. On the basis of TGA data compound 9 was investigated for its utility as a single source precursor to deposit ZnS films on silica-coated glass and crystalline silicon substrates at 150, 200, 250, and 300 °C using an aerosol assisted chemical vapor deposition (AACVD) method. The resultant films were confirmed to be hexagonal-ZnS by Raman spectroscopy and PXRD, and the surface morphologies were examined by SEM and AFM analysis. Thin films deposited from (9) at 250 and 300 °C were found to be comprised of more densely packed and more highly crystalline ZnS than films deposited at lower temperatures. The electronic properties of the ZnS thin films were deduced by UV-Vis spectroscopy to be very similar and displayed absorption behavior and band gap (E<sub>g</sub> = 3.711-3.772 eV) values between those expected for bulk cubic-ZnS (E<sub>g</sub> = 3.54 eV) and hexagonal-ZnS (E<sub>g</sub> = 3.91 eV).</p>

Topics
  • surface
  • compound
  • single crystal X-ray diffraction
  • single crystal
  • scanning electron microscopy
  • thin film
  • atomic force microscopy
  • zinc
  • glass
  • glass
  • thermogravimetry
  • Silicon
  • Nuclear Magnetic Resonance spectroscopy
  • Raman spectroscopy
  • chemical vapor deposition
  • Ultraviolet–visible spectroscopy
  • molecular structure
  • elemental analysis