People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Blacque, Olivier
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2022[Ru(tmphen)<sub>3</sub>]<sub>2</sub>[Fe(CN)<sub>6</sub>] and [Ru(phen)<sub>3</sub>][Fe(CN)<sub>5</sub>(NO)] complexes and formation of a heterostructured RuO<sub>2</sub>–Fe<sub>2</sub>O<sub>3</sub> nanocomposite as an efficient alkaline HER and OER electrocatalystcitations
- 2022[Ru(tmphen)(3)](2)[Fe(CN)(6)] and [Ru(phen)(3)][Fe(CN)(5)(NO)] complexes and formation of a heterostructured RuO2-Fe2O3 nanocomposite as an efficient alkaline HER and OER electrocatalystcitations
- 2022Platinum(II) and Copper(II) complexes of asymmetric halogen-substituted [NNʹO] ligandscitations
- 2021Synthetic control over polymorph formation in the d-band semiconductor system FeS2citations
- 2021Synthetic control over polymorph formation in the d-band semiconductor system FeS2citations
- 2020Anisotropic character of the metal-to-metal transition in Pr4Ni3O10citations
- 2018Highly Stable and Strongly Emitting N-Heterocyclic Carbene Platinum(II) Biaryl Complexescitations
- 2018Highly stable and strongly emitting N-heterocyclic carbene platinum(II) biaryl complexescitations
- 2017Rationally designed blue triplet emitting gold(III) complexes based on a phenylpyridine-derived frameworkcitations
- 2015Stable and color tunable emission properties based on non-cyclometalated gold(III) complexescitations
- 2014Luminescent monocyclometalated cationic gold(iii) complexescitations
- 2012Dinuclear and mononuclear chromium acetylide complexescitations
- 2012Trans Bis-N-heterocyclic carbene bis-acetylide palladium(II) complexescitations
- 2012(Benzimidazolin-2-ylidene)-AuI-Alkynyl Complexescitations
- 2011Syntheses and photophysical properties of luminescent mono-cyclometalated gold(III) cis-dialkynyl complexescitations
- 2011Alfred Werner's coordination chemistry: new insights from old samplescitations
- 2006Dinitrosyl rhenium complexes for ring-opening metathesis polymerization (ROMP)citations
- 2006Unprecedented ROMP activity of low-valent rhenium-nitrosyl complexes: Mechanistic evaluation of an electrophilic olefin metathesis system.citations
- 2006Unprecedented ROMP activity of low-valent rhenium-nitrosyl complexes : mechanistic evaluation of an electrophilic olefin metathesis systemcitations
Places of action
Organizations | Location | People |
---|
article
Highly stable and strongly emitting N-heterocyclic carbene platinum(II) biaryl complexes
Abstract
<p>CC cyclometalated platinum(II) triplet emitters bearing electronically different N-heterocyclic carbenes - (1,3-diisopropyl-4-(trifluoromethyl)-imidazol-2-ylidene (d), 1,3-diisopropyl-benzimidazol-2-ylidene (e), and 1,3-diisopropyl-imidazol-2-ylidene (f)) - as neutral ligands and biphenyl (bph) as well as its fluorinated derivative octafluorobiphenyl (oFbph) as dianionic cyclometalating ancillary ligand were synthesized and structurally characterized by <sup>1</sup>H, <sup>13</sup>C, <sup>19</sup>F, and <sup>195</sup>Pt NMR, single crystal X-ray diffraction, and HR-ESI-MS studies. Detailed photophysical investigations carried out reveal a strong influence on the excited-state properties exerted by the electronic nature of the N-heterocyclic carbenes as well as the fluorine functional groups on the ancillary biphenyl moiety. The solid-state structures of all complexes reveal a nearly planar and slightly distorted square planar geometry around the platinum center. Introduction of fluorine groups into the ligand framework leads to a less structured emission centered at 513 nm in poly(methyl methacrylate) (PMMA) thin films, compared to the highly structured emission profile of the bph analogues. Additionally, a hypsochromic shift of approximately 10-12 nm was found in the absorption as well as in the emission profiles and is attributed to the electron deficient nature of the oFbph ligand. Three wt % of the compounds doped in PMMA exhibit photoluminescence efficiencies as high as 92% in thin films. DFT and TD-DFT calculations on selected molecules revealed the charge transfer to be an admixture of intraligand (<sup>3</sup>ILCT) and metal-to-ligand charge transfer (<sup>3</sup>MLCT) and the frontier orbitals corresponding to the emission to be mainly localized on the bph and oFbph ligands, which is consistent with the observations from the photophysical investigations. The thermal stability of the complexes evaluated by thermogravimetric analysis (TGA) shows an enhanced thermal stability for the complexes bearing fluorine functional groups.</p>