Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zadrozny, Joseph M.

  • Google
  • 1
  • 4
  • 27

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Determination of d-Orbital Populations in a Cobalt(II) Single-Molecule Magnet Using Single-Crystal X-ray Diffraction27citations

Places of action

Chart of shared publication
Craven, Matthew
1 / 1 shared
Nygaard, Mathilde H.
1 / 1 shared
Long, Jeffrey R.
1 / 7 shared
Overgaard, Jacob
1 / 18 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Craven, Matthew
  • Nygaard, Mathilde H.
  • Long, Jeffrey R.
  • Overgaard, Jacob
OrganizationsLocationPeople

article

Determination of d-Orbital Populations in a Cobalt(II) Single-Molecule Magnet Using Single-Crystal X-ray Diffraction

  • Craven, Matthew
  • Nygaard, Mathilde H.
  • Long, Jeffrey R.
  • Zadrozny, Joseph M.
  • Overgaard, Jacob
Abstract

<p>The tetrahedral cobalt(II) compound (Ph4P)2[Co(SPh)4] was the first mononuclear transition-metal complex shown to exhibit slow relaxation of the magnetization in zero external magnetic field. Because the relative populations of the d orbitals play a vital role in dictating the magnitude of the magnetic anisotropy, the magnetic behavior of this complex is directly related to its electronic structure, yet the exact role of the soft, thiophenolate ligands in influencing the d-electron configuration has previously only been investigated via theoretical methods. To provide detailed experimental insight into the effect of this ligand field, the electron density distribution in this compound was determined from low-temperature, single-crystal X-ray diffraction data and subsequent multipole modeling. Topological analysis of the electron density indicates significant covalent contributions to the cobalt-sulfur bonds. The derived d-orbital populations further reveal a fully occupied d z2 orbital, minor d xz orbital population, and nearly equal population of the d xy, d x2- y2, and d yz orbitals. Notably, we find that an electrostatic interaction between Co(II) and one hydrogen atom from a thiophenolate group in the xz plane increases the energy of the d x2- y2 orbital, leading to the nearly equal population with d xy and strong magnetic anisotropy.</p>

Topics
  • density
  • impedance spectroscopy
  • compound
  • x-ray diffraction
  • Hydrogen
  • cobalt
  • magnetization