Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Von Hänisch, Carsten

  • Google
  • 1
  • 4
  • 19

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Alkali and Alkaline Earth Metal Derivatives of Disila-Bridged Podands: Coordination Chemistry and Structural Diversity.19citations

Places of action

Chart of shared publication
Dankert, Fabian
1 / 1 shared
Reuter, K.
1 / 6 shared
Cn, Mais
1 / 1 shared
Donsbach, C.
1 / 1 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Dankert, Fabian
  • Reuter, K.
  • Cn, Mais
  • Donsbach, C.
OrganizationsLocationPeople

article

Alkali and Alkaline Earth Metal Derivatives of Disila-Bridged Podands: Coordination Chemistry and Structural Diversity.

  • Dankert, Fabian
  • Reuter, K.
  • Von Hänisch, Carsten
  • Cn, Mais
  • Donsbach, C.
Abstract

Within this study, the synthesis and coordination chemistry of open-chain ligands bearing disila-units is presented. Instead of basic 1:1 complexes, structural diversity was discovered in the variety of ligand and salt. Stable complexes of alkali and alkaline earth metal complexes were obtained by equimolar reactions of different salts with the disila-bridged podands 8,9-disila-EO5 (1) and 11,12-disila-EO7 (2) (EO5 = pentaethylene glycol; EO7 = heptaethylene glycol). The respective alkaline earth metal complexes of the type [Ca(8,9-disila-EO5)(OTf)2] (3), [Sr(8,9-disila-EO5)I2] (5), [Sr(11,12-disila-EO7)I]I (6), and [Ba(11,12-disila-EO7)OTf2] (7) (OTf = CF3SO3-) were characterized via single-crystal X-ray diffraction analyses. Within the reaction of the alkali metal salt NaPF6 with 1, the sodium ion acts as a template during the complexation process. Under elimination of one molecule of diethylene glycol, the dinuclear species [Na2(8,9,17,18-tetrasila-EO8)(PF6)2]·EO2 (4) (EO8 = octaethylen glycol, EO2 = diethylene glycol) is obtained, in which the sodium cations are 7-fold coordinated within a disilane-bearing framework. The reaction of 2 with CsOTf failed, leading to recrystallization of anhydrous CsOTf. By means of DFT calculations it was shown that the disila-bearing ligands are burdened with negative hyperconjugation interactions between the silicon and the oxygen atoms, but the coordination by sufficiently hard cations can easily overcompensate the competing polarization. In contrast, soft Lewis acids barely share interactions with silicon-bonded oxygen atoms. All findings are consistent with observations made in solution according to 29Si NMR spectroscopical studies.

Topics
  • impedance spectroscopy
  • x-ray diffraction
  • Oxygen
  • Sodium
  • Silicon
  • density functional theory
  • Nuclear Magnetic Resonance spectroscopy
  • recrystallization
  • Alkaline earth metal