Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hanna, John

  • Google
  • 5
  • 34
  • 117

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2022Computational Modelling for the Effects of Capsular Clustering on Fracture of Encapsulation-Based Self-Healing Concrete Using XFEM and Cohesive Surface Technique8citations
  • 2018Final report: Understanding influence of thermal history and glass chemistry on kinetics of phase separation and crystallization in borosilicate glass-ceramic waste forms for aqueous reprocessed high level wastecitations
  • 2017Topotactic fluorine insertion into the channels of FeSb2O4-related materials.13citations
  • 2013Investigation into the effect of Si doping on the performance of Sr1−yCayMnO3−δ SOFC cathode materials25citations
  • 2012(87)Sr solid-state NMR as a structurally sensitive tool for the investigation of materials: antiosteoporotic pharmaceuticals and bioactive glasses.71citations

Places of action

Chart of shared publication
Crum, Jarrod
1 / 2 shared
Goel, Ashutosh
1 / 7 shared
Mccloy, John
1 / 3 shared
Riley, Brian J.
1 / 14 shared
Hand, Russell
1 / 2 shared
Hyatt, Neil
1 / 1 shared
Laune, Benjamin De
1 / 2 shared
Rees, Gregory
1 / 3 shared
Marco, Jose
1 / 1 shared
Hah, Hien-Yoong
1 / 1 shared
Greaves, Colin
1 / 37 shared
Johnson, Charles
1 / 1 shared
Johnson, Jacqueline
1 / 1 shared
Berry, Frank
1 / 10 shared
Hancock, Cathryn
1 / 3 shared
Keenan, Philip
1 / 1 shared
Kemp, T.
1 / 1 shared
Losilla, E.
1 / 1 shared
Porras, Jose
1 / 3 shared
Slater, Peter
1 / 45 shared
Xiang, Ye
1 / 2 shared
Pourpoint, Frédérique
1 / 3 shared
Lao, Jonathan
1 / 8 shared
Nedelec, Jean-Marie
1 / 23 shared
Folliet, Nicolas
1 / 1 shared
Bonhomme, Christian
1 / 7 shared
Smith, Mark, E.
1 / 2 shared
Coelho Diogo, Cristina
1 / 3 shared
Gervais, Christel
1 / 34 shared
Iuga, Dinu
1 / 5 shared
Laurencin, Danielle
1 / 14 shared
Lacroix, Joséphine
1 / 2 shared
Du, Jincheng
1 / 14 shared
Jallot, Edouard
1 / 18 shared
Chart of publication period
2022
2018
2017
2013
2012

Co-Authors (by relevance)

  • Crum, Jarrod
  • Goel, Ashutosh
  • Mccloy, John
  • Riley, Brian J.
  • Hand, Russell
  • Hyatt, Neil
  • Laune, Benjamin De
  • Rees, Gregory
  • Marco, Jose
  • Hah, Hien-Yoong
  • Greaves, Colin
  • Johnson, Charles
  • Johnson, Jacqueline
  • Berry, Frank
  • Hancock, Cathryn
  • Keenan, Philip
  • Kemp, T.
  • Losilla, E.
  • Porras, Jose
  • Slater, Peter
  • Xiang, Ye
  • Pourpoint, Frédérique
  • Lao, Jonathan
  • Nedelec, Jean-Marie
  • Folliet, Nicolas
  • Bonhomme, Christian
  • Smith, Mark, E.
  • Coelho Diogo, Cristina
  • Gervais, Christel
  • Iuga, Dinu
  • Laurencin, Danielle
  • Lacroix, Joséphine
  • Du, Jincheng
  • Jallot, Edouard
OrganizationsLocationPeople

article

Topotactic fluorine insertion into the channels of FeSb2O4-related materials.

  • Laune, Benjamin De
  • Rees, Gregory
  • Marco, Jose
  • Hah, Hien-Yoong
  • Greaves, Colin
  • Johnson, Charles
  • Johnson, Jacqueline
  • Berry, Frank
  • Hanna, John
Abstract

This paper discusses the fluorination characteristics of phases related to FeSb<sub>2</sub>O<sub>4</sub>, by reporting the results of a detailed study of Mg<sub>0.50</sub>Fe<sub>0.50</sub>Sb<sub>2</sub>O<sub>4</sub> and Co<sub>0.50</sub>Fe<sub>0.50</sub>Sb<sub>2</sub>O<sub>4</sub>. Reaction with fluorine gas at low temperatures (typically 230 °C) results in topotactic insertion of fluorine into the channels, which are an inherent feature of the structure. Neutron powder diffraction and solid state NMR studies show that the interstitial fluoride ions are bonded to antimony within the channel walls to form Sb – F – Sb bridges. To date, these reactions have been observed only when Fe<sup>2+</sup> ions are present within the chains of edge-linked octahedra (FeO<sub>6</sub> in FeSb<sub>2</sub>O<sub>4</sub>) that form the structural channels. Oxidation of Fe<sup>2+</sup> to Fe<sup>3+</sup> is primarily responsible for balancing the increased negative charge associated with the presence of the fluoride ions within the channels. For the two phases studied, the creation of Fe<sup>3+</sup> ions within the chains of octahedra modify the magnetic exchange interactions to change the ground-state magnetic symmetry to C-type magnetic order in contrast to the A-type order observed for the unfluorinated oxide parents.

Topics
  • impedance spectroscopy
  • phase
  • interstitial
  • Nuclear Magnetic Resonance spectroscopy
  • Antimony