People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kanaan, Sanjeevi
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Tetragonal to cubic transformation of SiO2 stabilized ZrO2 polymorph through dysprosium substitutions
Abstract
Partially stabilized tetragonal zirconia (t-ZrO2) is of particular interest for hard tissue replacements. Ageing related failures of the ceramic associated with the gradual transformation from t-ZrO2 to m-ZrO2 (monoclinic zirconia) can lead to its premature removal from the implant site. In addition, monitoring the satisfactory performance of the implant throughout its life span without invasive techniques is a challenging task. The magnetic resonance imaging (MRI) contrast ability of dysprosium (Dy3+) is well established. To this aim, varied levels of Dy3+ additions in the ZrO2-SiO2 binary oxide system have been explored. The results indicate the effective role of Dy3+ in the formation of thermally and mechanically stable c-ZrO2 (cubic zirconia) phase at higher temperatures. The presence of SiO2 influenced the t-ZrO2 stabilization whereas Dy3+ tends to occupy the ZrO2 lattice sites to induce c-ZrO2 transition. Magnetic and magnetic resonance imaging (MRI) tests displayed the commendable contrast ability of Dy3+ stabilized ZrO2-SiO2 binary systems. Nanoindentation results demonstrate a remarkable enhancement on the mechanical properties.