Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Steinberg, Simon

  • Google
  • 12
  • 28
  • 188

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (12/12 displayed)

  • 2024Insights into a Defective Potassium Sulfido Cobaltate: Giant Magnetic Exchange Bias, Ionic Conductivity, and Electrical Permittivitycitations
  • 2021Exploring the frontier between polar intermetallics and Zintl phases for the examples of the prolific ALnTnTe<sub>3</sub>-type alkali metal (A) lanthanide (Ln) late transition metal (Tn) tellurides5citations
  • 2021Approaching the Glass Transition Temperature of GeTe by Crystallizing Ge 15 Te 8515citations
  • 2021Approaching the Glass Transition Temperature of GeTe by Crystallizing Ge<sub>15</sub>Te<sub>85</sub>15citations
  • 2020Revealing the Bonding Nature in an ALnZnTe3-Type Alkaline-Metal (A) Lanthanide (Ln) Zinc Telluride by Means of Experimental and Quantum-Chemical Techniques10citations
  • 2017Layered Structures and Disordered Polyanionic Nets in the Cation-Poor Polar Intermetallics CsAu1.4Ga2.8 and CsAu2Ga2.64citations
  • 2016Gold in the Layered Structures of R3Au7Sn3: From Relativity to Versatility20citations
  • 2016Gold in the Layered Structures of R3Au7Sn320citations
  • 2015Cation-Poor Complex Metallic Alloys in Ba(Eu)-Au-Al(Ga) Systems33citations
  • 2015Crystal Structure and Bonding in BaAu5Ga2 and AeAu4+ xGa3- x (Ae = Ba and Eu)22citations
  • 2015Gold-rich R3Au7Sn3: establishing the interdependence between electronic features and physical properties22citations
  • 2015Gold-rich R3Au7Sn322citations

Places of action

Chart of shared publication
Dehnen, Stefanie
1 / 5 shared
Vrijmoed, Johannes C.
1 / 2 shared
Siemensmeyer, Konrad
1 / 8 shared
Thiele, Günther
1 / 2 shared
Reza Ghazanfari, M.
1 / 1 shared
Tallu, Mirko
1 / 1 shared
Eickmeier, Katharina
2 / 2 shared
Haeser, Maria
1 / 1 shared
Lucas, Pierre
2 / 33 shared
Pries, Julian
2 / 7 shared
Kerres, Peter
2 / 4 shared
Wei, Shuai
2 / 11 shared
Wuttig, Matthias
2 / 39 shared
Gladisch, Fabian
2 / 2 shared
Yu, Yuan
2 / 8 shared
Häser, Maria
1 / 2 shared
Mudring, Anja-Verena
5 / 78 shared
Smetana, Volodymyr
7 / 55 shared
Paramanik, Uday
2 / 2 shared
Mudring, Anja Verena
2 / 14 shared
Manfrinetti, Pietro
4 / 57 shared
Provino, Alessia
4 / 27 shared
Dhar, Sudesh K.
4 / 7 shared
Pecharsky, Vitalij
1 / 4 shared
Mudryk, Yaroslav
1 / 3 shared
Miller, Gordon J.
2 / 9 shared
Card, Nathan
1 / 1 shared
Kulkarni, Ruta
2 / 2 shared
Chart of publication period
2024
2021
2020
2017
2016
2015

Co-Authors (by relevance)

  • Dehnen, Stefanie
  • Vrijmoed, Johannes C.
  • Siemensmeyer, Konrad
  • Thiele, Günther
  • Reza Ghazanfari, M.
  • Tallu, Mirko
  • Eickmeier, Katharina
  • Haeser, Maria
  • Lucas, Pierre
  • Pries, Julian
  • Kerres, Peter
  • Wei, Shuai
  • Wuttig, Matthias
  • Gladisch, Fabian
  • Yu, Yuan
  • Häser, Maria
  • Mudring, Anja-Verena
  • Smetana, Volodymyr
  • Paramanik, Uday
  • Mudring, Anja Verena
  • Manfrinetti, Pietro
  • Provino, Alessia
  • Dhar, Sudesh K.
  • Pecharsky, Vitalij
  • Mudryk, Yaroslav
  • Miller, Gordon J.
  • Card, Nathan
  • Kulkarni, Ruta
OrganizationsLocationPeople

article

Cation-Poor Complex Metallic Alloys in Ba(Eu)-Au-Al(Ga) Systems

  • Pecharsky, Vitalij
  • Mudring, Anja-Verena
  • Smetana, Volodymyr
  • Mudryk, Yaroslav
  • Miller, Gordon J.
  • Steinberg, Simon
Abstract

<p>Four complex intermetallic compounds BaAu<sub>6±x</sub>Ga<sub>6±y</sub> (x = 1, y = 0.9) (I), BaAu<sub>6±x</sub>Al<sub>6±y</sub> (x = 0.9, y = 0.6) (II), EuAu<sub>6.2</sub>Ga<sub>5.8</sub> (III), and EuAu<sub>6.1</sub>Al<sub>5.9</sub> (IV) have been synthesized, and their structures and homogeneity ranges have been determined by single crystal and powder X-ray diffraction. Whereas I and II originate from the NaZn<sub>13</sub>-type structure (cF104-112, Fm3Ic), III (tP52, P4/nbm) is derived from the tetragonal Ce<sub>2</sub>Ni<sub>17</sub>Si<sub>9</sub>-type, and IV (oP104, Pbcm) crystallizes in a new orthorhombic structure type. Both I and II feature formally anionic networks with completely mixed site occupation by Au and triel (Tr = Al, Ga) atoms, while a successive decrease of local symmetry from the parental structures of I and II to III and, ultimately, to IV correlates with increasing separation of Au and Tr on individual crystallographic sites. Density functional theory-based calculations were employed to determine the crystallographic site preferences of Au and the respective triel element to elucidate reasons for the atom distribution ("coloring scheme"). Chemical bonding analyses for two different "EuAu<sub>6</sub>Tr<sub>6</sub>" models reveal maximization of the number of heteroatomic Au-Tr bonds as the driving force for atom organization. The Fermi levels fall in broad pseudogaps for both models allowing some electronic flexibility. Spin-polarized band structure calculations on the "EuAu<sub>6</sub>Tr<sub>6</sub>" models hint to singlet ground states for europium and long-range magnetic coupling for both EuAu<sub>6.2</sub>Ga<sub>5.8</sub> (III) and EuAu<sub>6.1</sub>Al<sub>5.9</sub> (IV). This is substantiated by experimental evidence because both compounds show nearly identical magnetic behavior with ferromagnetic transitions at T<sub>C</sub> = 6 K and net magnetic moments of 7.35 μ<sub>B</sub>/f.u. at 2 K. The effective moments of 8.3 μ<sub>B</sub>/f.u., determined from Curie-Weiss fits, point to divalent oxidation states for europium in both III and IV.</p>

Topics
  • density
  • impedance spectroscopy
  • compound
  • single crystal
  • theory
  • powder X-ray diffraction
  • density functional theory
  • intermetallic
  • band structure
  • Europium