People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mamakhel, Aref
Aarhus University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Synthesis and characterization of an organic-inorganic hybrid crystal
- 2022X-ray Electron Density Study of the Chemical Bonding Origin of Glass Formation in Metal–Organic Frameworkscitations
- 2022X-ray Electron Density Study of the Chemical Bonding Origin of Glass Formation in Metal–Organic Frameworkscitations
- 2022Composition space of PtIrPdRhRu high entropy alloy nanoparticles synthesized by solvothermal reactionscitations
- 2022Composition space of PtIrPdRhRu high entropy alloy nanoparticles synthesized by solvothermal reactionscitations
- 2022Combined characterization approaches to investigate magnetostructural effects in exchange-spring ferrite nanocomposite magnetscitations
- 2022Synthesis of Phase-Pure Thermochromic VO2 (M1)citations
- 2021Tailoring the stoichiometry of C 3 N 4 nanosheets under electron beam irradiationcitations
- 2021Tailoring the stoichiometry of C3N4 nanosheets under electron beam irradiation
- 2021Tailoring the stoichiometry of C3N4 nanosheets under electron beam irradiationcitations
- 2021Tuning of bandgaps and emission properties of light-emitting diode materials through homogeneous alloying in molecular crystalscitations
- 2019Promotion Mechanisms of Au Supported on TiO2 in Thermal- And Photocatalytic Glycerol Conversioncitations
- 2019General Solvothermal Synthesis Method for Complete Solubility Range Bimetallic and High-Entropy Alloy Nanocatalystscitations
- 2019Promotion Mechanisms of Au Supported on TiO 2 in Thermal- And Photocatalytic Glycerol Conversioncitations
- 2019In Situ In-House Powder X-ray Diffraction Study of Zero-Valent Copper Formation in Supercritical Methanolcitations
- 2019Promotion mechanisms of Au supported on TiO2 in thermal- and photocatalytic glycerol conversioncitations
- 2018Functionally Graded (PbTe)1-x(SnTe)x Thermoelectricscitations
- 2017In Situ PDF Study of the Nucleation and Growth of Intermetallic PtPb Nanocrystalscitations
- 2017Supercritical flow synthesis of Pt1-xRux nanoparticles: comparative phase diagram study of nanostructure versus bulkcitations
- 2016Electron Density Analysis of the "O-O" Charge-Shift Bonding in Rubrene Endoperoxidecitations
- 2015A Novel Dual-Stage Hydrothermal Flow Reactor
Places of action
Organizations | Location | People |
---|
article
Synthesis of Phase-Pure Thermochromic VO2 (M1)
Abstract
<p>A highly reproducible, simple, and inexpensive synthesis method for obtaining phase-pure thermochromic monoclinic VO<sub>2</sub> (M1) is presented. Vanadium(III) oxide and ammonium metavanadate were used as starting materials and no additional reducing agents are required. Heating a mixture of these two components under an argon atmosphere at 750 °C for 2-4 h provides the direct formation of VO2 (M1) without detectable impurity phases. The formation reaction of VO2 (M1) was studied using in situ powder X-ray diffraction (PXRD), where a pressed pellet of the precursor material was heated during the continuous collection of PXRD data on a two-dimensional detector. The formation takes place via at least two crystalline intermediate phases where the first forms at 170-185 °C (likely an ammonium and oxygen deficient (NH4)1-δVO3-δ phase), and the second at 230 °C (likely a more disordered phase due to the increased background intensity). We assume that the solid-state reaction between the unknown but likely disordered vanadate phase and vanadium(III) oxide starts at 395 °C in concert with the appearance of several other unknown crystalline phases. At 610-750 °C, phase-pure rutile VO2 (P42/mnm) is obtained, which upon cooling converts to monoclinic VO2 (M1). The product composition, microstructure, and homogeneity are characterized by Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. The synthesized VO2 (M1) has a sharp reversible insulator-to-metal transition at 71.3 °C during heating and 59.5 °C during cooling, as characterized using differential scanning calorimetry, and resistivity and magnetic property measurements.</p>