People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nagle-Cocco, Liam Av
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
Places of action
Organizations | Location | People |
---|
article
Pressure Tuning the Jahn-Teller Transition Temperature in NaNiO2.
Abstract
NaNiO2 is a layered material consisting of alternating layers of NaO6 and Jahn-Teller-active NiO6 edge-sharing octahedra. At ambient pressure, it undergoes a broad phase transition from a monoclinic to rhombohedral structure between 465 and 495 K, associated with the loss of long-range orbital ordering. In this work, we present the results of a neutron powder diffraction study on powdered NaNiO2 as a function of pressure and temperature from ambient pressure to ∼5 GPa between 290 and 490 K. The 290 and 460 K isothermal compressions remained in the monoclinic phase up to the maximum pressures studied, whereas the 490 K isotherm was mixed-phase throughout. The unit-cell volume was fitted to a second-order Birch-Murnaghan equation of state, where B = 119.6(5) GPa at 290 K. We observe at 490 K that the fraction of the Jahn-Teller-distorted phase increases with pressure, from 67.8(6)% at 0.71(2) GPa to 80.2(9)% at 4.20(6) GPa. Using this observation, in conjunction with neutron diffraction measurements at 490 K on removing pressure from 5.46(9) to 0.342(13) GPa, we show that the Jahn-Teller transition temperature increases with pressure. Our results are used to present a structural pressure-temperature phase diagram for NaNiO2. To the best of our knowledge, this is the first diffraction study of the effect of pressure on the Jahn-Teller transition temperature in materials with edge-sharing Jahn-Teller-distorted octahedra and the first variable-pressure study focusing on the Jahn-Teller distortion in a nickelate.