People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Johnson, Andrew L.
University of Bath
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (40/40 displayed)
- 2024Zinc and cadmium thioamidate complexes:rational design of single-source precursors for the AACVD of ZnScitations
- 2024Plasma-Enhanced Atomic Layer Deposition of Hematite for Photoelectrochemical Water Splitting Applications
- 2023Multi-pulse atomic layer deposition of p-type SnO thin filmscitations
- 2022N-O Ligand Supported Stannylenescitations
- 2021Evaluation of Sn(II) Aminoalkoxide Precursors for Atomic Layer Deposition of SnO Thin Films.citations
- 2021Tin(II) Ureide Complexes:Synthesis, Structural Chemistry and Evaluation as SnO precursorscitations
- 2021Atomic scale surface modification of TiO2 3D nano-arrays : plasma enhanced atomic layer deposition of NiO for photocatalysiscitations
- 2021Tin(II) Ureide Complexescitations
- 2021Atomic layer deposition method of metal (II), (0), or (IV) containing film layer
- 2019Aerosol-Assisted Chemical Vapor Deposition of ZnS from Thioureide Single Source Precursorscitations
- 2019Synthetic, Structural and Computational Studies on Heavier Tetragen and Chalcogen Triazenide Complexescitations
- 2019Evaluation of AA-CVD deposited phase pure polymorphs of SnS for thin films solar cellscitations
- 2018Synthesis, Characterisation and Thermal Properties of Sn(II) Pyrrolide Complexescitations
- 2018Oxidative Addition to Sn(II) Guanidinate Complexes: Precursors to Tin(II) Chalcogenide Nanocrystalscitations
- 2018Recent developments in molecular precursors for atomic layer depositioncitations
- 2018Tin Guanidinato Complexes: Oxidative Control of Sn, SnS, SnSe and SnTe Thin Film Depositioncitations
- 2017Deposition of SnS Thin Films from Sn(II) Thioamidate Precursorscitations
- 2017Aerosol-Assisted chemical vapor deposition of cds from xanthate single source precursorscitations
- 2016Aerosol-assisted CVD of SnO from stannous alkoxide precursorscitations
- 2016Synthesis, Structure and CVD Studies of the Group 13 Complexes [Me 2 M{tfacnac}] [M = Al, Ga, In; Htfacnac = F 3 CC(OH)CHC(CH 3 )NCH 2 CH 2 OCH 3 ]citations
- 2016Cobalt(I) olefin complexes:precursors for metal-organic chemical vapor deposition of high purity cobalt metal thin filmscitations
- 2016Homoleptic zirconium amidatescitations
- 2016Synthesis, Structure and CVD Studies of the Group 13 Complexes [Me2M{tfacnac}] [M = Al, Ga, In; Htfacnac = F3CC(OH)CHC(CH3)NCH2CH2OCH3]citations
- 2015Tailoring precursors for depositioncitations
- 2015Synthesis and characterization of fluorinated β-ketoiminate zinc precursors and their utility in the AP-MOCVD growth of ZnO:Fcitations
- 2015Synthesis and characterization of fluorinated β-ketoiminate zinc precursors and their utility in the AP-MOCVD growth of ZnO:Fcitations
- 2015Polymorph-Selective Deposition of High Purity SnS Thin Films from a Single Source Precursorcitations
- 2014Single-source AACVD of composite cobalt-silicon oxide thin filmscitations
- 2014The first crystallographically-characterised Cu(II) xanthatecitations
- 2013Synthesis of heterobimetallic tungsten acetylacetonate/alkoxide complexes and their application as molecular precursors to metal tungstatescitations
- 2013Development of metal chalcogenide precursors for use in chemical vapour deposition (CVD) and colloidal nano particle synthesis
- 2013CVD of pure copper films from novel iso-ureate complexescitations
- 2013Inorganic and organozinc fluorocarboxylatescitations
- 2012Photoactivated linkage isomerism in single crystals of nickel, palladium and platinum di-nitro complexes: A photocrystallographic investigationcitations
- 2011Synthesis of complexes with the polydentate ligand N,N '-bis(2-hydroxyphenyl)-pyridine-2,6-dicarboxamidecitations
- 2011Synthesis, characterization, and materials chemistry of group 4 silylimidescitations
- 2009Structural Tungsten-Imido Chemistry: The Gas-Phase Structure of W(NBut)(2)(NHBut)(2) and the Solid-State Structures of Novel Heterobimetallic W/N/M (M = Rh, Pd, Zn) Speciescitations
- 2009Synthesis and structure of aluminium amine-phenolate complexescitations
- 2001Tungsten(VI) metallacarborane imido complexes; hydrogen bonding to a bent imido ligand in {W(Nt(Bu)2[N(H)C(Me)NHtBu](C2 B9H11}
- 2000First structural characterisation of a 2,1,12-MC2B9 metallacarborane, [2,2,2-(NMe2)3-closo-2,1,12-TaC2B 9H11]. Trends in boron NMR shifts on replacing a {BH} vertex with a metal {MLn} vertex in icosahedral carboranescitations
Places of action
Organizations | Location | People |
---|
article
Tin(II) Ureide Complexes
Abstract
<p>In an attempt to tailor precursors for application in the deposition of phase pure SnO, we have evaluated a series of tin (1-6) ureide complexes. The complexes were successfully synthesized by employing N,N′-Trialkyl-functionalized ureide ligands, in which features such as stability, volatility, and decomposition could be modified with variation of the substituents on the ureide ligand in an attempt to find the complex with the ideal electronic, steric, or coordinative properties, which determine the fate of the final products. The tin(II) ureide complexes 1-6 were synthesized by direct reaction [Sn{NMe2}2] with aryl and alkyl isocyanates in a 1:2 molar ratio. All the complexes were characterized by NMR spectroscopy as well as elemental analysis and, where applicable, thermogravimetric (TG) analysis. The single-crystal X-ray diffraction studies of 2, 3, 4, and 6 revealed that the complexes crystallize in the monoclinic space group P2(1)/n (2 and 4) or in the triclinic space group P-1 (3 and 6) as monomers. Reaction with phenyl isocyanate results in the formation of the bimetallic species 5, which crystallizes in the triclinic space group P-1, a consequence of incomplete insertion into the Sn-NMe2 bonds, versus mesityl isocyanate, which produces a monomeric double insertion product, 6, under the same conditions, indicating a difference in reactivity between phenyl isocyanate and mesityl isocyanate with respect to insertion into Sn-NMe2 bonds. The metal centers in these complexes are all four-coordinate, displaying either distorted trigonal bipyramidal or trigonal bipyramidal geometries. The steric influence of the imido-ligand substituent has a clear effect on the coordination mode of the ureide ligands, with complexes 2 and 6, which contain the cyclohexyl and mesityl ligands, displaying κ2-O,N coordination modes, whereas κ2-N,N′ coordination modes are observed for the sterically bulkier tert-butyl and adamantyl derivatives, 3 and 4. The thermogravimetric analysis of the complexes 3 and 4 exhibited excellent physicochemical properties with clean single-step curves and low residual masses in their TG analyses suggesting their potential utility of these systems as MOCVD and ALD precursors.</p>