Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Alharbi, Yasser T.

  • Google
  • 1
  • 4
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Molecular Precursor Route to Bournonite (CuPbSbS3) Thin Films and Powders14citations

Places of action

Chart of shared publication
Parvez, Khaled
1 / 3 shared
Lewis, Dj
1 / 30 shared
Missous, Mohamed
1 / 28 shared
Alam, Firoz
1 / 13 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Parvez, Khaled
  • Lewis, Dj
  • Missous, Mohamed
  • Alam, Firoz
OrganizationsLocationPeople

article

Molecular Precursor Route to Bournonite (CuPbSbS3) Thin Films and Powders

  • Parvez, Khaled
  • Lewis, Dj
  • Alharbi, Yasser T.
  • Missous, Mohamed
  • Alam, Firoz
Abstract

Quaternary metal chalcogenides have attracted attention as candidates for absorber materials for inexpensive and sustainable solar energy generation. One of these materials, bournonite (orthorhombic CuPbSbS3), has attracted much interest of late for its properties commensurate with photovoltaic energy conversion. This paper outlines the synthesis of bournonite for the first time by a discrete molecular precursor strategy. The metal dithiocarbamate complexes bis(diethyldithiocarbamato)copper (II) (Cu(S2CNEt2)2, (1)), bis(diethyldithiocarbamato)lead (II) (Pb(S2CNEt2)2, (2)), and bis(diethyldithiocarbamato)antimony (III) (Sb(S2CNEt2)3, (3)) were prepared, characterized, and employed as molecular precursors for the synthesis of bournonite powders and the thin film by solvent-less pyrolysis and spray-coat-pyrolysis techniques, respectively. The polycrystalline powders and thin films were characterized by powder X-ray diffraction (p-XRD), which could be indexed to orthorhombic CuPbSbS3. The morphology of the powder at the microscale was studied using scanning electron microscopy (SEM). Energy-dispersive X-ray spectroscopy (EDX) was used to elucidate an approximately 1:1:1:3 Cu/Pb/Sb/S elemental ratio. An optical band gap energy of 1.55 eV was estimated from a Tauc plot, which is close to the theoretical value of 1.41 eV.

Topics
  • pyrolysis
  • impedance spectroscopy
  • scanning electron microscopy
  • thin film
  • laser emission spectroscopy
  • powder X-ray diffraction
  • copper
  • Energy-dispersive X-ray spectroscopy
  • Antimony