People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fan, Yifei
University of Groningen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2020Highly Branched Waxy Potato Starch-Based Polyelectrolyte:Controlled Synthesis and the Influence of Chain Composition on Solution Rheologycitations
- 2020Highly Branched Waxy Potato Starch-Based Polyelectrolytecitations
- 2018Thermo-Responsive Starch-g-(PAM-co-PNIPAM):Controlled Synthesis and Effect of Molecular Components on Solution Rheologycitations
Places of action
Organizations | Location | People |
---|
article
Highly Branched Waxy Potato Starch-Based Polyelectrolyte
Abstract
<p>In the present work, a series of highly branched random copolymers of acrylamide (AM), sodium 2-acrylamido-2-methyl-1-propanesulfonate (SAMPS), and N-isopropylacrylamide (NIPAM) were prepared by using water-soluble waxy potato starch-based macroinitiator via aqueous Cu0-mediated living radical polymerization (25 °C). The AM/SAMPS/NIPAM ratio was varied to investigate the influence of chain composition on the aqueous rheological properties of the prepared copolymers. Rheological results indicated an optimum SAMPS intake (25 mol %) for the balanced performance of viscosity and salt resistance in saline water. The intake of NIPAM units (e.g., 25 mol %), contrary to what was expected, undermines the thickening ability of the copolymers in saline water because of hydrophobic association. In high salinity solution, thermo-thickening behavior can be observed at low shear rates (γ≤ 3 s-1) because of the screening effect of salt on the negatively charged SAMPS units. At the high shear rate, the thermo-thickening behavior disappears because of the disruption of the NIPAM aggregates. These results pave the way toward the use of the prepared polymers as rheology modifiers in a variety of possible formulations for different applications, in particular in enhanced oil recovery.</p>