People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nikiforov, Anton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023Unraveling exclusive in-plasma initiated oxidation processes occurring at polymeric surfaces upon O2 admixtures to medium pressure Ar and N2 DBD treatmentscitations
- 2023Degradable plasma-polymerized poly(ethylene glycol)-like coating as a matrix for food-packaging applicationscitations
- 2023Unraveling Exclusive In-Plasma Initiated Oxidation Processes Occurring at Polymeric Surfaces upon O2 Admixtures to Medium Pressure Ar and N2 DBD Treatmentscitations
- 2021Biological activity and antimicrobial property of Cu/a-C:H nanocomposites and nanolayered coatings on titanium substratescitations
- 2020Fabrication of microporous coatings on titanium implants with improved mechanical, antibacterial and cell-interactive propertiescitations
- 2017An in-depth investigation of toluene decomposition with a glass beads-packed bed dielectric barrier discharge reactorcitations
- 2017An in-depth investigation of toluene decomposition with a glass beads-packed bed dielectric barrier discharge reactorcitations
- 2017Double Dielectric Barrier (DBD) plasma-assisted deposition of chemical stabilized nanoparticles on polyamide 6,6 and polyester fabrics
- 2016Cracks, Microcracks and Fracture in Polymer Structures: Formation, Detection, Autonomic Repaircitations
Places of action
Organizations | Location | People |
---|
article
An in-depth investigation of toluene decomposition with a glass beads-packed bed dielectric barrier discharge reactor
Abstract
A glass beads-packed bed dielectric barrier discharge reactor is used for the removal of low concentration toluene (330 ppm) in air. The influence of relative humidity (RH) of the air on the discharge characteristics, toluene removal efficiency, and byproduct formation is examined. Optical emission spectroscopy has shown that the amount of N2 excited states decreases with increasing RH because of the increased quenching of these excited states. A toluene removal efficiency of 42 ± 2% was obtained at an optimum RH of 40% at a specific input energy of approximately 250 J/L. The main products of the toluene decomposition process were identified as CO2, CO, N2O, O3 (both dry and humid air) and HCOOH (dry air only). While higher RH suppresses the formation of formic acid, the highest CO and CO2 yields, N2O, and O3 concentrations at an RH of 40% confirm the observed highest removal efficiency at this experimental condition.