People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kontogeorgis, Georgios M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Composition-dependence of relative static permittivity in ePPC-SAFT for mixed-solvent alkali halidescitations
- 2024Investigation of the Alcohols and Water Hydrogen Bonding Structure via Monomer Fraction Studiescitations
- 2024The Connection between the Debye and Güntelberg Charging Processes and the Importance of Relative Permittivity: The Ionic Cloud Charging Processcitations
- 2023On the estimation of equivalent conductivity of electrolyte solutions; The effect of relative static permittivity and viscositycitations
- 2023Comparisons of equation of state models for electrolytes: e-CPA and e-PPC-SAFTcitations
- 2023Comparison of models for the relative static permittivity with the e-CPA equation of statecitations
- 2023How to account for the concentration dependency of relative permittivity in the Debye–Hückel and Born equationscitations
- 2023Extension of the eSAFT-VR Mie Equation of State from aqueous to non-aqueous electrolyte solutionscitations
- 2022Importance of the Relative Static Permittivity in electrolyte SAFT-VR Mie Equations of Statecitations
- 2022The true Hückel equation for electrolyte solutions and its relation with the Born termcitations
- 2022Self-stratification studies in waterborne epoxy-silicone systemscitations
- 2022Self-stratification studies in waterborne epoxy-silicone systemscitations
- 2018A Multi-stage and Multi-level Computer Aided Framework for Sustainable Process Intensificationcitations
- 2013Modeling of Dielectric Properties of Aqueous Salt Solutions with an Equation of Statecitations
- 2013Modeling of dielectric properties of complex fluids with an equation of statecitations
- 2012Comparison of the Debye–Hückel and the Mean Spherical Approximation Theories for Electrolyte Solutionscitations
- 2007Adhesion between coating layers based on epoxy and siliconecitations
- 2004Chemical Product Design: A new challenge of applied thermodynamicscitations
Places of action
Organizations | Location | People |
---|
article
Investigation of the Alcohols and Water Hydrogen Bonding Structure via Monomer Fraction Studies
Abstract
The hydrogen bonding structure of alcohols and water is studied in this work using two association equations of state (cubic-plus-association (CPA); perturbed-chain statistical associating fluid theory (PC-SAFT)) and a theory connecting the relative static permittivity (RSP) with hydrogen bonding (RSP theory). The results from the two models are compared to experimental and molecular simulation data for free-site, monomer, and k-times bonded fractions, as well as for tetrahedrally bonded fractions for water. The agreement is satisfactory for alcohols but less so for water, especially when the most recent structural data for water are considered. This indicates that the four-site or roughly tetrahedral assumption incorporated for water in both approaches may be erroneous. It has been attempted to fit the RSP theory parameters to recently obtained data; such data show a rather small number of tetrahedral water molecules. These data are obtained from studies related to the water two-state theory. The results provide some insight into whether water can be assumed to be a homogeneous liquid or a two-state liquid, at least in the context of the theories (CPA, PC-SAFT, and RSP theory). The results are also discussed in the context of other theories and recent developments.