People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Inglezakis, Vassilis J.
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2023Structural, morphological and physiochemical analysis of SiC8H20O4/C2H5O/C7H16 modified mesoporous silica aerogels
- 2023Synthesis of a novel perovskite-carbon aerogel hybrid adsorbent with multiple metal-Lewis active sites for the removal of dyes from watercitations
- 2023Efficient mercury removal from water by using modified natural zeolites and comparison to commercial adsorbentscitations
- 2022Experimental and modeling studies of Sr2+ and Cs+ sorption on cryogels and comparison to commercial adsorbentscitations
- 2021Silica aerogels; a review of synthesis, applications and fabrication of hybrid compositescitations
- 2020Experimental study of zeolitic diffusion by use of a concentration-dependent surface diffusion modelcitations
- 2020Distributed 2D temperature sensing during nanoparticles assisted laser ablation by means of high-scattering fiber sensorscitations
- 2020Catalytic oxidation of methylene blue by use of natural zeolite-based silver and magnetite nanocompositescitations
- 2020Synthesis of biosourced silica-Ag nanocomposites and amalgamation reaction with mercury in aqueous solutionscitations
- 2020Mercury reduction and chemisorption on the surface of synthetic zeolite silver nanocompositescitations
- 2020A fractal-based correlation for time-dependent surface diffusivity in porous adsorbentscitations
- 2020Surface interactions and mechanisms study on the removal of iodide from water by use of natural Zeolite-based silver nanocompositescitations
- 2020Magnetic Fe3O4-Ag0 nanocomposites for effective mercury removal from watercitations
- 2019Variable diffusivity homogeneous surface diffusion model and analysis of merits and fallacies of simplified adsorption kinetics equationscitations
- 2019Application of nanoparticles and nanomaterials in thermal ablation therapy of cancercitations
- 2019Synthetic sodalite doped with silver nanoparticlescitations
- 2019Removal of iodide from water using silver nanoparticles-impregnated synthetic zeolitescitations
- 2019Manufacturing of ultra-fine particle coal fly ash–A380 aluminum matrix composites with improved mechanical properties by improved ring milling and oscillating microgrid mixingcitations
- 2019In situ production of high purity noble metal nanoparticles on fumed silica and catalytic activity towards 2-nitrophenol reductioncitations
- 2018A comparative study on phyllosilicate and tectosilicate mineral structural propertiescitations
- 20183 -nanoparticles as a powerful tool for membrane pore size determination and mercury removal
- 2018Synthetic coal fly ash-derived zeolites doped with silver nanoparticles for mercury (II) removal from watercitations
- 2018Silver nanoparticles impregnated zeolites derived from coal fly ashcitations
- 2012Mathematical modeling of sorption process of Cu2+ ions on analcime and clinoptilolitecitations
- 2012Automotive industry challenges in meeting EU 2015 environmental standardcitations
- 2009Automotive shredder residue (ASR)citations
- 2001Applicability of simplified models for the estimation of ion exchange diffusion coefficients in zeolitescitations
Places of action
Organizations | Location | People |
---|
article
Experimental and modeling studies of Sr2+ and Cs+ sorption on cryogels and comparison to commercial adsorbents
Abstract
In this work, two cryogels with the key monomers methacrylic acid and 2-acrylamido-2-methyl-1-propansulfonic acid (named AAC and SAC, respectively) with various functional groups were used as adsorbents for the removal of cesium and strontium ions from aqueous solutions. Kinetics, equilibrium, and column studies were carried out including experiments in different water matrices (ultrapure, tap, and river water) and comparison to commercial adsorbents. AAC reached sorption capacity of 362 mg g–1 for Cs+ and 209 mg g–1 for Sr2+, whereas SAC polymer showed maximum removal capacities of 259 and 211 mg g–1 for Cs+ and Sr2+, respectively. The five cycles of adsorption/desorption experiments showed a maximum of 8% loss of effectiveness for both cryogels. Batch kinetics adsorption data were modeled by using a rigorous diffusional model coupled to a novel fractal-like expression for variable surface diffusivity. The model revealed that the surface diffusivity dependence on time is nonmonotonic, with the occurrence of a maximum. Also, both fluid film and intraparticle transport resistances were shown to be important, with the internal one being more influential. The cryogels and two commercial materials (ion-exchange resin and zeolite) were tested for the removal of Cs+ and Sr2+ in ultrapure, tap, and river water; the results showed that the cryogels exhibit competitive effectiveness.