People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Erik Weinell, Claus
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (33/33 displayed)
- 2024Protective Mechanisms of Siloxane-Modified Epoxy Novolac Coatings at High-Pressure, High-Temperature Conditions
- 2024Advancing Coating Science: Non-Destructive Methods for Coating Degradation Evaluation and Breakdown Mechanism Investigation
- 2023Incorporation of unmodified technical Kraft lignin particles in anticorrosive epoxy novolac coatings
- 2023Trust, but verify!
- 2023Chemically-resistant epoxy novolac coatings: Effects of size-fractionated technical Kraft lignin particles as a structure-reinforcing componentcitations
- 2022Marine biofouling resistance rating using image analysiscitations
- 2022Detection and quantification of premature crack formation in curing epoxy coatingscitations
- 2022Encapsulated Inhibitive Pigment for Smart Anti-corrosive Epoxy Coatings
- 2022A Tunable Hyperspectral Imager for Detection and Quantification of Marine Biofouling on Coated Surfacescitations
- 2022Coating degradation and rust creep assessment - A comparison between a destructive method according to ISO 12944 and selected non-destructive methods
- 2022Parallel measurements and engineering simulations of conversion, shear modulus, and internal stress during ambient curing of a two-component epoxy coatingcitations
- 2022Self-stratification studies in waterborne epoxy-silicone systemscitations
- 2022Non-destructive Evaluation of Coating Degradation and Rust Creep
- 2021Methanol degradation mechanisms and permeability phenomena in novolac epoxy and polyurethane coatingscitations
- 2021The influence of CO2 at HPHT conditions on properties and failures of an amine-cured epoxy novolac coatingcitations
- 2021Simultaneous tracking of hardness, reactant conversion, solids concentration, and glass transition temperature in thermoset polyurethane coatingscitations
- 2021A Tannin-based Inhibitive Pigment for a Sustainable Anti-corrosive Epoxy Coating Formulation
- 2021Degradation pathways of amine-cured epoxy novolac and bisphenol F resins under conditions of high pressures and high temperatures
- 2021Effects of Biochar Nanoparticles on Anticorrosive Performance of Zinc-rich Epoxy Coatingscitations
- 2021Rust creep assessment - A comparison between a destructive method according to ISO 12944 and selected non-destructive methodscitations
- 2021Simultaneous tracking of hardness, reactant conversion, solids concentration, and glass transition temperature in thermoset polyurethane coatingscitations
- 2021The evolution of coating properties and internal stress during ambient curing of a two-component epoxy coating
- 2019Corrosion Protection of Epoxy Coating with Calcium Phosphate Encapsulated by Mesoporous Silica Nanoparticles
- 2019Exposure of hydrocarbon intumescent coatings to the UL1709 heating curve and furnace rheology: Effects of zinc borate on char propertiescitations
- 2019Measurements of methanol permeation rates across thermoset organic coatings
- 2009Advancements in high performance zinc epoxy coatings
- 2008Non-destructive determination of rust creep
- 2007Advancement in zinc rich epoxy primers for corrosion protection
- 2007Adhesion between coating layers based on epoxy and siliconecitations
- 2006Dissolution rate measurements of sea water soluble pigments for antifouling paintscitations
- 2006Anti-fouling silicone elastomers for offshore structures
- 2005Reaction rate estimation of controlled-release antifouling paint binders: Rosin-based systemscitations
- 2005Reaction rate estimation of controlled-release antifouling paint binders: Rosin-based systemscitations
Places of action
Organizations | Location | People |
---|
article
The influence of CO2 at HPHT conditions on properties and failures of an amine-cured epoxy novolac coating
Abstract
Using a three-phase batch reactor with coated steel panels, this investigation studies the influence of carbon dioxide (CO<sub>2</sub>), present in the gas phase at conditions of high pressure and high temperature (HPHT), on the degradation of an amine-cured epoxy novolac coating (EN). The combined effect of a gas, a hydrocarbon, and a seawater phase compromises the coating and leads to underfilm corrosion. Consequently, an understanding of the role of each of the phases is essential for the effective design of superior epoxy-based coatings for HPHT applications in the petroleum and other industries. On exposure to the three phases individually, at a low pressure of N<sub>2</sub>, the EN network remained unaffected and impervious. However, in the hydrocarbon-exposed zone, a combination of para-xylene, representing the hydrocarbon phase, and CO<sub>2 </sub>at HPHT, initiated a glass transition temperature depression with subsequent softening of the EN network. This allowed dissolved CO<sub>2</sub> gas to diffuse into the EN network, thereby generating pinholes at the coating surface. The seawater-exposed zone, in the presence of CO<sub>2</sub> at HPHT, suffered from an increased seawater ion diffusion, leading to blister formation.<br/>Moreover, the most detrimental subzone for the EN network was when CO<sub>2</sub>, para-xylene, and seawater were synergistically interacting at its hydrocarbon-seawater interface. This combination resulted in an increased chain motion of the EN network, subsequently allowing CO2 and seawater ions to diffuse into the EN network to the steel substrate, imposing underfilm corrosion. In the absence of CO<sub>2</sub>, blisters were formed at the interface subzone, but no corrosion was detected. The results are of high relevance to the petroleum industry, but also for the protection of transport pipelines and process equipment in the next-generation Carbon Capture and Storage (CCS) technologies.