People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Price, E.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Multiscale modeling and analysis of pressure drop contributions in catalytic filters
Abstract
Catalytic monolith filters with a honeycomb structure represent a key component of modern automotive exhaust gas aftertreatment systems. In this paper, we present and validate a multiscale modeling methodology for the prediction of filter pressure loss depending on the monolith channel geometry as well as the microscopic structure of the wall including catalytic coating. The approach is based on the combination of a 3D pore-scale model of flow through the wall reconstructed from X-ray tomography and a 1D+1D model of the filter channels. Several cordierite and SiC filter samples with varying substrate pore sizes and catalyst distributions are examined. A series of experiments are performed at different gas flow rates and filter lengths in order to validate the model predictions and to distinguish individual pressure drop contributions (inlet and outlet, channel, and wall). The predicted pressure drop shows a strong impact of the coating location and agrees well with the experiments. ©2021 American Chemical Society.