Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bidoky, Fazel Zare

  • Google
  • 1
  • 6
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Self-aligned capillarity-assisted printing of high aspect ratio flexible metal conductors10citations

Places of action

Chart of shared publication
Jochem, Krystopher S.
1 / 1 shared
Wang, Yan
1 / 10 shared
Kolliopoulos, Panayiotis
1 / 1 shared
Frisbie, C. Daniel
1 / 10 shared
Francis, Lorraine F.
1 / 8 shared
Kumar, Satish
1 / 21 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Jochem, Krystopher S.
  • Wang, Yan
  • Kolliopoulos, Panayiotis
  • Frisbie, C. Daniel
  • Francis, Lorraine F.
  • Kumar, Satish
OrganizationsLocationPeople

article

Self-aligned capillarity-assisted printing of high aspect ratio flexible metal conductors

  • Jochem, Krystopher S.
  • Bidoky, Fazel Zare
  • Wang, Yan
  • Kolliopoulos, Panayiotis
  • Frisbie, C. Daniel
  • Francis, Lorraine F.
  • Kumar, Satish
Abstract

<p>High-resolution, low-resistance, flexible metal interconnects that are many centimeters long were additively manufactured on plastic substrates using a roll-to-roll compatible print and plate process. Connected networks of ink-receiving reservoirs and capillary microchannels were first roll-to-roll molded on plastic films. Silver ink was jetted into the easily-targeted inkreceiving reservoirs, and the connected microchannels were fed and coated with ink by capillary flow and drying. Subsequent electroless plating of copper into the silver-coated channels created solid, high aspect ratio conductive traces. Processing windows for uniform silver deposition were identified as a function of ambient humidity, ink flow time, and channel geometry. Plating conditions were also optimized to alleviate copper stress development and debonding and to allow conductor flexibility. Overall, the optimized print-and-plate process is promising for additively manufacturing micron-scale, high aspect ratio (&gt;1), low-resistance (linear resistance ∼1 Ω/cm) conductors embedded in plastic, addressing a long-standing fabrication challenge for flexible printed electronics.</p>

Topics
  • Deposition
  • impedance spectroscopy
  • polymer
  • silver
  • copper
  • drying
  • aligned