People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hofmann, Thilo
University of Vienna
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Influence of plastic shape on interim fragmentation of compostable materials during compostingcitations
- 2023Fragmentation and Mineralization of a Compostable Aromatic–Aliphatic Polyester during Industrial Compostingcitations
- 2023Iron nitride nanoparticles for rapid dechlorination of mixed chlorinated ethene contaminationcitations
- 2022Iron Nitride Nanoparticles for Enhanced Reductive Dechlorination of Trichloroethylenecitations
- 2022Effect of Polymer Properties on the Biodegradation of Polyurethane Microplasticscitations
- 2019Sorption of organic substances to tire wear materials: Similarities and differences with other types of microplasticcitations
- 2016Can sodium humate coating on mineral surfaces hinder the deposition of nZVI?
- 2015Feasibility of the development of reference materials for the detection of Ag nanoparticles in food: neat dispersions and spiked chicken meatcitations
Places of action
Organizations | Location | People |
---|
article
Effect of Polymer Properties on the Biodegradation of Polyurethane Microplastics
Abstract
<p>The release of fragments from plastic products, that is, secondary microplastics, is a major concern in the context of the global plastic pollution. Currently available (thermoplastic) polyurethanes [(T)PU] are not biodegradable and therefore should be recycled. However, the ester bond in (T)PUs might be sufficiently hydrolysable to enable at least partial biodegradation of polyurethane particles. Here, we investigated biodegradation in compost of different types of (T)PU to gain insights into their fragmentation and biodegradation mechanisms. The studied (T)PUs varied regarding the chemistry of their polymer backbone (aromatic/aliphatic), hard phase content, cross-linking degree, and presence of a hydrolysis-stabilizing additive. We developed and validated an efficient and non-destructive polymer particle extraction process for partially biodegraded (T)PUs based on ultrasonication and density separation. Our results showed that biodegradation rates and extents decreased with increasing cross-linking density and hard-segment content. We found that the presence of a hydrolysis stabilizer reduced (T)PU fragmentation while not affecting the conversion of (T)PU carbon into CO2. We propose a biodegradation mechanism for (T)PUs that includes both mother particle shrinkage by surface erosion and fragmentation. The presented results help to understand structure-degradation relationships of (T)PUs and support recycling strategies.</p>