People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wood, Joseph
University of Birmingham
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2023Anisole hydrodeoxygenation over nickel-based catalystscitations
- 20213D printed re-entrant cavity resonator for complex permittivity measurement of crude oilscitations
- 2020Mild-temperature hydrodeoxygenation of vanillin a typical bio-oil model compound to creosol a potential future biofuelcitations
- 2020Maximizing paraffin to olefin ratio employing simulated nitrogen-rich syngas via Fischer-Tropsch process over Co3O4/SiO2 catalystscitations
- 2020Tetralin and decalin h-donor effect on catalytic upgrading of heavy oil inductively heated with steel ballscitations
- 2020Organocatalysis for versatile polymer degradationcitations
- 2019Poly(lactic acid) degradation into methyl lactate catalyzed by a well-defined Zn(II) complexcitations
- 2019Reaction kinetics of vanillin hydrodeoxygenation in acidic and nonacidic environments using bimetallic PdRh/Al2O3 catalystcitations
- 2019A mechanistic study of Layered-Double Hydroxide (LDH)-derived nickel-enriched mixed oxide (Ni-MMO) in ultradispersed catalytic pyrolysis of heavy oil and related petroleum coke formationcitations
- 2018Catalytic performance of Ni-Cu/Al2O3 for effective syngas production by methanol steam reformingcitations
- 2017In-situ catalytic upgrading of heavy oil using dispersed bionanoparticles supported on gram-positive and gram-negative bacteriacitations
- 2016Selective hydrogenation using palladium bioinorganic catalystcitations
- 2011Improving the interpretation of mercury porosimetry data using computerised X-ray tomography and mean-field DFTcitations
- 2008Experimental and modelling studies of the kinetics of mercury retraction from highly confined geometries during porosimetry in the transport and the quasi-equilibrium regimescitations
- 2006Studies of the entrapment of non-wetting fluid within nanoporous media using a synergistic combination of MRI and micro-computed X-ray tomographycitations
- 2005Minimisation and recycling of spent acid wastes from galvanising plantscitations
Places of action
Organizations | Location | People |
---|
article
A mechanistic study of Layered-Double Hydroxide (LDH)-derived nickel-enriched mixed oxide (Ni-MMO) in ultradispersed catalytic pyrolysis of heavy oil and related petroleum coke formation
Abstract
<p>Heavy oil contains a significantly lower H/C ratio and higher quantity of organic heteroatoms and organo-metallic complexes than conventional light oil. Consequently, novel catalytic materials are needed to aid in heavy oil upgrading to remove the deleterious components and support the higher demand for low sulfur and higher value fuels. Heavy oil upgrading was studied using an inexpensive nickel-aluminum Layered Double Hydroxide (LDH)-derived Ni-enriched Mixed Metal Oxides (Ni-MMO) dispersed catalyst in a Baskerville autoclave. The conditions were set at 425 °C, initial pressure of 20 bar, 0.02 Catalyst-To-Oil (CTO) ratio, and a residence time of 30 min to mimick previously optimized conditions for in situ upgrading processes. The extent of the upgrading following catalytic pyrolysis was evaluated in terms of a solid, liquid, and gaseous phase mass balance, liquid viscosity reduction, desulphurization, and True Boiling Point (TBP) distribution. A typical in situ activated CoMo-alumina commercial hydroprocessing catalyst was used as a reference. It was found that the produced oil from dispersed ultrafine Ni-MMO exhibited superior light oil characteristics. The viscosity decreased from 811 to 0.2 mPa·s while the light naptha fraction increased from 12.6% of the feed to 39.6%, with respect to the feed. Using a thorough suite of analytical techniques on the petroleum coke product, including Thermogravimetric Analysis (TGA) and Scanning Electron Microscopy (SEM), a reaction mechanism has been hypothesized for the upgrading by dispersed Ni-MMO under both N<sub>2</sub> and H<sub>2</sub> atmospheres. Under a N<sub>2</sub> atmosphere, the Ni-MMO, generated by the in situ thermal decomposition of the LDH, demonstrate a preferential asphaltene and poly aromatic adsorption mechanism, generating a poly aromatic mixed oxide-coke precursor. While using Ni-enriched mixed oxides under a reducing H<sub>2</sub> atmosphere, hydrogenation reactions become more significant.</p>