People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Glarborg, Peter
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2023Investigating the Interaction between Ilmenite and Zinc for Chemical Loopingcitations
- 2023Investigating the Interaction between Ilmenite and Zinc for Chemical Loopingcitations
- 2022Thermal Conversion of Sodium Phytate Using the Oxygen Carrier Ilmenite Interaction with Na-Phosphate and Its Effect on Reactivitycitations
- 2020Experimental Investigation and Mathematical Modeling of the Reaction between SO2(g) and CaCO3(s)-containing Micelles in Lube Oil for Large Two-Stroke Marine Diesel Enginescitations
- 2019Mixed Flow Reactor Experiments and Modeling of Sulfuric Acid Neutralization in Lube Oil for Large Two-Stroke Diesel Enginescitations
- 2019Mixed Flow Reactor Experiments and Modeling of Sulfuric Acid Neutralization in Lube Oil for Large Two-Stroke Diesel Enginescitations
- 2019Kinetic Parameters for Biomass under Self-Ignition Conditions: Low-Temperature Oxidation and Pyrolysiscitations
- 2018Characterization of free radicals by electron spin resonance spectroscopy in biochars from pyrolysis at high heating rates and at high temperaturescitations
- 2018Reaction kinetics for biomass self-ignition at 150–230°C
- 2017Reaction of Sulfuric Acid in Lube Oil: Implications for Large Two-Stroke Diesel Enginescitations
- 2017Deposit Shedding in Biomass-Fired Boilers: Shear Adhesion Strength Measurementscitations
- 2017Deposit Shedding in Biomass-Fired Boilers: Shear Adhesion Strength Measurementscitations
- 2016Adhesion Strength of Biomass Ash Deposits
- 2016Adhesion Strength of Biomass Ash Deposits
- 2016Characterization of free radicals by electron spin resonance spectroscopy in biochars from pyrolysis at high heating rates and at high temperaturescitations
- 2016Characterization of free radicals by electron spin resonance spectroscopy in biochars from pyrolysis at high heating rates and at high temperaturescitations
- 2016Deposit Shedding in Biomass-fired Boilers: Shear Adhesion Strength Measurements
- 2016Deposit Shedding in Biomass-fired Boilers: Shear Adhesion Strength Measurements
- 2015Rate constant and thermochemistry for K + O2 + N2 = KO2 + N2citations
- 2015Rate constant and thermochemistry for K + O 2 + N 2 = KO 2 + N 2citations
- 2014Effect of pyrolysis conditions and composition on the char structure and char yield of biomass chars
- 2013Deposit formation in a full-scale pulverized wood-fired power plant with and without coal fly ash addition
- 2013Modeling of sulfation of potassium chloride by ferric sulfate addition during grate-firing of biomass
- 2012Deposit Probe Measurements in Danish Grate and Pulverized Fuel Biomass Power Boilers
- 2012Deposit Probe Measurements in Danish Grate and Pulverized Fuel Biomass Power Boilers
- 2012Devolatilization and Combustion of Tire Rubber and Pine Wood in a Pilot Scale Rotary Kilncitations
- 2012Combustion Aerosols from Full-Scale Suspension-Firing of Wood Pellets
- 2010Oxy-fuel combustion of solid fuelscitations
Places of action
Organizations | Location | People |
---|
article
Kinetic Parameters for Biomass under Self-Ignition Conditions: Low-Temperature Oxidation and Pyrolysis
Abstract
Pulverized biomass may self-heat and spontaneously ignite when stored or processed at intermediate or even low temperatures. In this work, reaction kinetic parameters for biomass oxidation and pyrolysis were determined for the temperature range 423–523 K. Thermogravimetric analysis was used to determine mass loss kinetics in a stepwise-isothermal heating program. Two wood species (pine and beech), two agricultural residues (wheat straw and sunflower husks), and two commercial wood pellet samples were investigated. Atmospheres with 0, 20, and 80% oxygen were used in the experiments. A pyrolysis model of four parallel reactions for extractives, hemicellulose, cellulose, and lignin fit the experimental data for 0% O<sub>2 </sub>well. Oxidation kinetics could be modeled by additional reactions in parallel to the pyrolysis mechanism. Two mechanisms were tested: (1) considering oxidation of a lumped “volatilizable” component plus oxidation of char; and (2) separate oxidation reactions for volatilizable extractives, hemicellulose, cellulose, and lignin, plus char. The more complex mechanism did not give a clear advantage over the simpler mechanism. It was further found that pyrolysis and oxidation reactions for the components could be modeled with the same activation energy, regardless of which biomass they appear in. For the lumped component oxidation model, an apparent activation energy of 130 kJ/mol was found. The observed reaction order in oxygen was in the range 0.4–0.5. The models also compared favorably to additional experimental data between 373 and 773 K for a heating rate of 5 K/min. The kinetic models presented here are intended mainly to describe low-temperature reactions, such as self-heating of biomass and the onset of smoldering combustion.