Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Høj, Martin

  • Google
  • 7
  • 29
  • 123

Technical University of Denmark

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2022Zinc Based High Temperature Methanol Synthesis Catalysts Enabling Direct Synthesis of Olefins and Aromatics from CO2citations
  • 2022Zinc Based High Temperature Methanol Synthesis Catalysts Enabling Direct Synthesis of Olefins and Aromatics from CO 2citations
  • 2020Structural dynamics of an iron molybdate catalyst under redox cycling conditions studied with in situ multi edge XAS and XRD33citations
  • 2019Modeling of the molybdenum loss in iron molybdate catalyst pellets for selective oxidation of methanol to formaldehyde23citations
  • 2019Catalytic Hydropyrolysis of Biomass using Molybdenum Sulfide Based Catalyst. Effect of Promoters27citations
  • 2018Hydrogen assisted catalytic biomass pyrolysis for green fuels. Effect of cata-lyst in the fluid bedcitations
  • 2011Flame spray synthesis of CoMo/Al2O3 hydrotreating catalysts40citations

Places of action

Chart of shared publication
Mentzel, Uffe Vie
2 / 2 shared
Christensen, Jakob Munkholt
2 / 6 shared
Sehested, Jens
2 / 7 shared
Nikolajsen, Michael T.
2 / 2 shared
Schjødt, Niels Christian
2 / 2 shared
Gaur, Abhijeet
1 / 1 shared
Stehle, Matthias
1 / 1 shared
Jensen, Anker Degn
5 / 23 shared
Raun, Kristian Viegaard
2 / 2 shared
Thrane, Joachim
1 / 1 shared
Grunwaldt, Jan-Dierk
2 / 33 shared
Baier, Sina
1 / 10 shared
Appel, Charlotte Clausen
1 / 1 shared
Mccormack, Kaylee
1 / 1 shared
Johannessen, Jeppe
1 / 1 shared
Thorhauge, Max
1 / 1 shared
Rasmussen, Søren Birk
1 / 1 shared
Jensen, Peter Arendt
2 / 34 shared
Gabrielsen, Jostein
1 / 1 shared
Viwel, Peter
1 / 1 shared
Stummann, Magnus Zingler
2 / 2 shared
Davidsen, Bente
2 / 2 shared
Hansen, Asger Baltzer
2 / 2 shared
Hansen, Lars Pilsgaard
1 / 5 shared
Wiwel, Peter
1 / 1 shared
Gabrielsend, Jostein
1 / 1 shared
Brorson, Michael
1 / 4 shared
Linde, Kasper
1 / 1 shared
Hansen, Thomas Klint
1 / 1 shared
Chart of publication period
2022
2020
2019
2018
2011

Co-Authors (by relevance)

  • Mentzel, Uffe Vie
  • Christensen, Jakob Munkholt
  • Sehested, Jens
  • Nikolajsen, Michael T.
  • Schjødt, Niels Christian
  • Gaur, Abhijeet
  • Stehle, Matthias
  • Jensen, Anker Degn
  • Raun, Kristian Viegaard
  • Thrane, Joachim
  • Grunwaldt, Jan-Dierk
  • Baier, Sina
  • Appel, Charlotte Clausen
  • Mccormack, Kaylee
  • Johannessen, Jeppe
  • Thorhauge, Max
  • Rasmussen, Søren Birk
  • Jensen, Peter Arendt
  • Gabrielsen, Jostein
  • Viwel, Peter
  • Stummann, Magnus Zingler
  • Davidsen, Bente
  • Hansen, Asger Baltzer
  • Hansen, Lars Pilsgaard
  • Wiwel, Peter
  • Gabrielsend, Jostein
  • Brorson, Michael
  • Linde, Kasper
  • Hansen, Thomas Klint
OrganizationsLocationPeople

article

Catalytic Hydropyrolysis of Biomass using Molybdenum Sulfide Based Catalyst. Effect of Promoters

  • Rasmussen, Søren Birk
  • Jensen, Peter Arendt
  • Gabrielsen, Jostein
  • Viwel, Peter
  • Jensen, Anker Degn
  • Stummann, Magnus Zingler
  • Davidsen, Bente
  • Hansen, Asger Baltzer
  • Hansen, Lars Pilsgaard
  • Høj, Martin
Abstract

Catalytic hydropyrolysis of beech wood was conducted in a fluid bed reactor at 450°C and a total pressure of 26 bar. The differences in hydrodeoxygenation activity, selectivity and the resulting product composition between sulfided Mo/MgAl<sub>2</sub>O<sub>4</sub>, CoMo/MgAl<sub>2</sub>O<sub>4</sub> or NiMo/MgAl<sub>2</sub>O<sub>4</sub> catalysts have been investigated. The acidity and molybdate species in the oxide catalyst precursors were characterized with ammonia temperature programmed desorption and Raman spectroscopy. The spent sulfided catalysts were also extensively characterized by scanning electron microscopy (SEM) and by scanning transmission electron microscopy (STEM) coupled with energy dispersive X-ray spectroscopy (EDS). The catalytic hydropyrolysis of beech wood produced four kinds of products: Liquid organic and aqueous phases, solid char and gases. The solid char and aqueous phase yields were not affected by the type of catalyst. The sum of condensed organics and C<sub>4+</sub> gas yield varied between 24.3 and 26.4 wt.% on dry, ash free basis (daf) and was highest for the Mo catalyst and lowest for the NiMo catalyst. The NiMo catalyst had the highest hydrogenation, cracking, and de-carbonylation activity. The oxygen content in the condensed organic phase was between 9.0 and 12 wt.% on dry basis (db) and was lowest for the CoMo catalyst and highest for the Mo catalyst. The carbon recovery in the condensable organics was 39 % for both the CoMo and the Mo, and 37 % for the NiMo catalyst. These results indicate that the CoMo, due to its high deoxygenation activity and high carbon recovery, is the most suitable catalyst for catalytic hydropyrolysis. The carbon content on the spent CoMo was between 1.5 and 3.3 wt.% and between 0.9 and 3.1 on the spent NiMo catalyst, but between 5.0 and 5.5 wt.% on the spent Mo catalyst. The higher carbon content on the spent Mo catalyst was probably due to its lower deoxygenation and hydrogenation activity. Calcium particles and small amounts of potassium (≤1.5 wt.%) were detected on all spent catalysts using STEM-EDS, showing that alkali metals are transferred from the biomass to the catalyst, which potentially could lead to catalyst deactivation.

Topics
  • impedance spectroscopy
  • molybdenum
  • Carbon
  • phase
  • scanning electron microscopy
  • Oxygen
  • Potassium
  • transmission electron microscopy
  • Energy-dispersive X-ray spectroscopy
  • Calcium
  • wood
  • Raman spectroscopy
  • oxygen content
  • carbon content