Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gogolev, Ivan

  • Google
  • 2
  • 4
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Detection of alkali path in a pilot-scale combustor using laser spectroscopy and surface ionization — From vapor to particles3citations
  • 2021Alkali Monitoring of Industrial Process Gas by Surface Ionization─Calibration, Assessment, and Comparison to in Situ Laser Diagnostics11citations

Places of action

Chart of shared publication
Viljanen, Jan
2 / 7 shared
Gall, Dan
2 / 2 shared
Andersson, Klas
2 / 4 shared
Allgurén, Thomas
2 / 3 shared
Chart of publication period
2023
2021

Co-Authors (by relevance)

  • Viljanen, Jan
  • Gall, Dan
  • Andersson, Klas
  • Allgurén, Thomas
OrganizationsLocationPeople

article

Alkali Monitoring of Industrial Process Gas by Surface Ionization─Calibration, Assessment, and Comparison to in Situ Laser Diagnostics

  • Viljanen, Jan
  • Gall, Dan
  • Andersson, Klas
  • Gogolev, Ivan
  • Allgurén, Thomas
Abstract

In this work, we present rigorous calibration and assessment of a surface ionization detector (SID) for alkali monitoring in industrial process gases and compare it to an in situ laser diagnostic method called collinear photofragmentation and atomic absorption spectroscopy (CPFAAS). The side-by-side comparison of the time-resolved alkali concentration was performed in a technical-scale gas burner seeded with selected alkali salts, corresponding to alkali molar fractions of 10-100 ppm in the flue gas. The SID operates at room temperature and relies on extraction, dilution, and conditioning of the sample gas, whereas CPFAAS provides in situ molecular data. During KCl addition, the instruments were in good agreement: 80.1 ppm (SID) and 88.5 ppm (CPFAAS). In addition to the field measurements, internal validation of SID performance parameters (flow, electric field strength, and filament temperature) and external parameters (particle size and salt composition) was performed. The difference in sensitivity toward different alkali salts was found to be considerable, which limits the quantitative assessment for a sample gas of unknown composition. The results demonstrate the capability and limitations of the SID and show that a SID can satisfactory monitor KCl levels in a process gas over several days of continuous measurements. However, for heterogeneous fuels with deficient characterization of the gas composition, the obtained SID signal is difficult to interpret without supportive diagnostics. The generic ability of the SID to detect Na and K in both gas and particle phases makes it a valuable complement to alkali diagnostics, such as spectroscopic techniques. ; Peer reviewed

Topics
  • impedance spectroscopy
  • surface
  • phase
  • extraction
  • strength