People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bredas, Jean-Luc
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2023Additive-free molecular acceptor organic solar cells processed from a biorenewable solvent approaching 15% efficiencycitations
- 2022Controlled n‐Doping of Naphthalene‐Diimide‐Based 2D Polymerscitations
- 2018Characterization of the Valence and Conduction Band Levels of n = 1 2D Perovskites: A Combined Experimental and Theoretical Investigationcitations
- 2017Singlet Fission in Rubrene Derivatives: Impact of Molecular Packingcitations
- 2017High operational and environmental stability of high-mobility conjugated polymer field-effect transistors achieved through the use of molecular additivescitations
- 2017High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additives.
- 2017Open-Circuit Voltage in Organic Solar Cells: The Impacts of Donor Semicrystallinity and Coexistence of Multiple Interfacial Charge-Transfer Bandscitations
- 2016High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additivescitations
- 2016Improving the Stability of Organic Semiconductors: Distortion Energy versus Aromaticity in Substituted Bistetracenecitations
- 2016Passivation of Molecular n-Doping: Exploring the Limits of Air Stabilitycitations
- 2016Ionization Energies, Electron Affinities, and Polarization Energies of Organic Molecular Crystals: Quantitative Estimations from a Polarizable Continuum Model (PCM)-Tuned Range-Separated Density Functional Approachcitations
- 2016Spectroscopy and control of near-surface defects in conductive thin film ZnOcitations
- 2016Phosphonic Acids for Interfacial Engineering of Transparent Conductive Oxidescitations
- 2015Magnetite Fe3O4 (111) Surfaces: Impact of Defects on Structure, Stability, and Electronic Propertiescitations
- 2015Effect of Solvent Additives on the Solution Aggregation of Phenyl-C61-Butyl Acid Methyl Ester (PCBM)citations
- 2012Controlled Conjugated Backbone Twisting for an Increased Open-Circuit Voltage while Having a High Short-Circuit Current in Poly(hexylthiophene) Derivativescitations
Places of action
Organizations | Location | People |
---|
article
Phosphonic Acids for Interfacial Engineering of Transparent Conductive Oxides
Abstract
Transparent conducting oxides (TCOs), such as indium tin oxide and zinc oxide, play an important role as electrode materials in organic-semiconductor devices. The properties of the inorganic-organic interface - the offset between the TCO Fermi level and the relevant transport level, the extent to which the organic semiconductor can wet the oxide surface, and the influence of the surface on semiconductor morphology - significantly affect device performance. This review surveys the literature on TCO modification with phosphonic acids (PAs), which has increasingly been used to engineer these interfacial properties. The first part outlines the relevance of TCO surface modification to organic electronics, surveys methods for the synthesis of PAs, discusses the modes by which they can bind to TCO surfaces, and compares PAs to alternative organic surface modifiers. The next section discusses methods of PA monolayer deposition, the kinetics of monolayer formation, and structural evidence regarding molecular orientation on TCOs. The next sections discuss TCO work-function modification using PAs, tuning of TCO surface energy using PAs, and initiation of polymerizations from TCO-tethered PAs. Finally, studies that examine the use of PA-modified TCOs in organic light-emitting diodes and organic photovoltaics are compared. © 2016 American Chemical Society.