People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zbořil, Radek
Technical University of Ostrava
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Unveiling the potential of covalent organic frameworks for energy storage: Developments, challenges, and future prospectscitations
- 2023TiO2 nanotube arrays decorated with Ir nanoparticles for enhanced hydrogen evolution electrocatalysis
- 2022Intermetallic Copper‐Based Electride Catalyst with High Activity for C–H Oxidation and Cycloaddition of CO<sub>2</sub> into Epoxidescitations
- 2022Band gap and Morphology Engineering of Hematite Nanoflakes from an Ex Situ Sn Doping for Enhanced Photoelectrochemical Water Splittingcitations
- 2022Graphene-Based Metal-Organic Framework Hybrids for Applications in Catalysis, Environmental, and Energy Technologiescitations
- 2021Rational Design of Graphene Derivatives for Electrochemical Reduction of Nitrogen to Ammoniacitations
- 2021Covalent Graphene-MOF Hybrids for High-Performance Asymmetric Supercapacitorscitations
- 2021Emerging MXene@Metal-Organic Framework Hybridscitations
- 2020Controlling phase fraction and crystal orientation via thermal oxidation of iron foils for enhanced photoelectrochemical performancecitations
- 2020Metal Halide Perovskite@Metal-Organic Framework Hybridscitations
- 2020High-performance hydrogen evolution electrocatalysis using proton-intercalated TiO2 nanotube arrays as interactive supports for Ir nanoparticlescitations
- 2019Crystal Structure‐ and Morphology‐Driven Electrochemistry of Iron Oxide Nanoparticles in Hydrogen Peroxide Detectioncitations
- 2019Photocatalysis with Reduced TiO2: From Black TiO2 to Cocatalyst-Free Hydrogen Productioncitations
- 2016Advanced Sensing of Antibiotics with Magnetic Gold Nanocomposite: Electrochemical Detection of Chloramphenicolcitations
- 2015Direct evidence of Fe(v) and Fe(iv) intermediates during reduction of Fe(vi) to Fe(iii): a nuclear forward scattering of synchrotron radiation approachcitations
- 2013Thermal decomposition of [Co(en)3][Fe(CN)6]∙ 2H2O: Topotactic dehydration process, valence and spin exchange mechanism elucidation
- 2006Phase composition of steel–enamel interfaces: Effects of chemical pre-treatmentcitations
Places of action
Organizations | Location | People |
---|
article
Graphene-Based Metal-Organic Framework Hybrids for Applications in Catalysis, Environmental, and Energy Technologies
Abstract
<p>Current energy and environmental challenges demand the development and design of multifunctional porous materials with tunable properties for catalysis, water purification, and energy conversion and storage. Because of their amenability to de novo reticular chemistry, metal-organic frameworks (MOFs) have become key materials in this area. However, their usefulness is often limited by low chemical stability, conductivity and inappropriate pore sizes. Conductive two-dimensional (2D) materials with robust structural skeletons and/or functionalized surfaces can form stabilizing interactions with MOF components, enabling the fabrication of MOF nanocomposites with tunable pore characteristics. Graphene and its functional derivatives are the largest class of 2D materials and possess remarkable compositional versatility, structural diversity, and controllable surface chemistry. Here, we critically review current knowledge concerning the growth, structure, and properties of graphene derivatives, MOFs, and their graphene@MOF composites as well as the associated structure-property-performance relationships. Synthetic strategies for preparing graphene@MOF composites and tuning their properties are also comprehensively reviewed together with their applications in gas storage/separation, water purification, catalysis (organo-, electro-, and photocatalysis), and electrochemical energy storage and conversion. Current challenges in the development of graphene@MOF hybrids and their practical applications are addressed, revealing areas for future investigation. We hope that this review will inspire further exploration of new graphene@MOF hybrids for energy, electronic, biomedical, and photocatalysis applications as well as studies on previously unreported properties of known hybrids to reveal potential "diamonds in the rough".</p>