People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bhagat, Rohit
Coventry University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2019Porous Metal-Organic Frameworks for Enhanced Performance Silicon Anodes in Lithium-Ion Batteriescitations
- 2019Temperature Considerations for Charging Li-Ion Batteriescitations
- 2018Binder-free Sn-Si heterostructure films for high capacity Li-ion batteriescitations
- 2018Electrochemical Evaluation and Phase-related Impedance Studies on Silicon-Few Layer Graphene (FLG) Composite Electrode Systemscitations
- 2017Electrodeposition of Si and Sn-based Amorphous Films for High Energy Novel Electrode Materialscitations
- 2017Investigation of cycling-induced microstructural degradation in silicon-based electrodes in lithium-ion batteries using X-ray nanotomographycitations
- 2016Metal recovery by electrodeposition from a molten salt two-phase cell systemcitations
- 2016Calculating the macroscopic dynamics of gas/metal/slag emulsion during steelmakingcitations
- 2015The Solubility of Specific Metal Oxides in Molten Borate Glasscitations
- 2013Precursor preparation for Ti-Al-V-Y alloy via FFC cambridge processcitations
- 2008Production of Ti-W alloys from mixed oxide precursors via the FFC cambridge processcitations
- 2008The production of Ti-Mo alloys from mixed oxide precursors via the FFC cambridge processcitations
- 2006Direct electrochemical production of Ti-10W alloys from mixed oxide preform precursorscitations
- 2005Direct electrochemical production of beta titanium alloys
Places of action
Organizations | Location | People |
---|
article
Porous Metal-Organic Frameworks for Enhanced Performance Silicon Anodes in Lithium-Ion Batteries
Abstract
Maintaining the physical integrity of electrode microstructures in Li-ion batteries is critical to significantly extend their cycle life. This is especially important for high-capacity anode materials such as silicon, whose operational volume expansion exerts huge internal stress within the anode, resulting in electrode destruction and capacity fade. In this study, we demonstrate that by incorporating metal–organic frameworks (MOFs) with carboxylate organic linkers into Si-based anodes, a stable and flexible pore network is generated to maximize and maintain Li-ion flux throughout the electrode’s architecture. We show that the zirconium carboxylate MOF UiO-67 is a versatile comaterial to boost performance and mitigate the rate of anode degradation that presently limits the lifetime of Si anodes. The cage-like pores in UiO-67 and flexural properties of the 4,4′-biphenyldicarboxylate organic linker are proposed to create robust “ionophores” in the anode film to enhance longer term durability and performance.