People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Walker, Alison B.
University of Bath
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Motional Narrowing Effects in the Excited State Spin Populations of Mn-Doped Hybrid Perovskitescitations
- 2020Deducing transport properties of mobile vacancies from perovskite solar cell characteristicscitations
- 2019Putting the Squeeze on Lead Iodide Perovskitescitations
- 2019How transport layer properties affect perovskite solar cell performancecitations
- 2018Engineering Two-Phase and Three-Phase Microstructures from Water-Based Dispersions of Nanoparticles for Eco-Friendly Polymer Solar Cell Applicationscitations
- 2018The Role of Surface Recombination on the Performance of Perovskite Solar Cells:Effect of Morphology and Crystalline Phase of TiO 2 Contactcitations
- 2018The Role of Surface Recombination on the Performance of Perovskite Solar Cellscitations
- 2018Lead-Free Perovskite Semiconductors Based on Germanium-Tin Solid Solutions:Structural and Optoelectronic Propertiescitations
- 2018Lead-Free Perovskite Semiconductors Based on Germanium-Tin Solid Solutionscitations
- 2018The role of surface recombination on the performance of perovskite solar cells: Effect of morphology and crystalline phase of TiO 2 contactcitations
- 2015Characterization of Planar Lead Halide Perovskite Solar Cells by Impedance Spectroscopy, Open-Circuit Photovoltage Decay, and Intensity-Modulated Photovoltage/Photocurrent Spectroscopycitations
- 2014Monte Carlo studies of electronic processes in dye-sensitized solar cellscitations
- 2013Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principlescitations
- 2012In situ detection of free and trapped electrons in dye-sensitized solar cells by photo-induced microwave reflectance measurementscitations
- 2010Bicontinuous minimal surface nanostructures for polymer blend solar cellscitations
Places of action
Organizations | Location | People |
---|
article
Putting the Squeeze on Lead Iodide Perovskites
Abstract
<p>Lattice compression through hydrostatic pressure has emerged as an effective means of tuning the structural and optoelectronic properties of hybrid halide perovskites. In addition to external pressure, the local strain present in solution-processed thin films also causes significant heterogeneity in their photophysical properties. However, an atomistic understanding of structural changes of hybrid perovskites under pressure and their effects on the electronic landscape is required. Here, we use high level ab initio simulation techniques to explore the effect of lattice compression on the formamidinium (FA) lead iodide compound, FA<sub>1-x</sub>Cs<sub>x</sub>PbI<sub>3</sub> (x = 0, 0.25). We show that, in response to applied pressure, the Pb-I bonds shorten, the PbI<sub>6</sub> octahedra tilt anisotropically, and the rotational dynamics of the FA<sup>+</sup> molecular cation are partially suppressed. Because of these structural distortions, the compressed perovskites exhibit band gaps that are narrower (red-shifted) and indirect with spin-split band edges. Furthermore, the shallow defect levels of intrinsic iodide defects transform to deep-level states with lattice compression. This work highlights the use of hydrostatic pressure as a powerful tool for systematically modifying the photovoltaic performance of halide perovskites.</p>