People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bladt, Eva
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2023Diphenyl ditelluride assisted synthesis of noble metal-based silver-telluride 2D organometallic nanofibers with enhanced aggregation-induced emission (AIE) after oleylamine treatment
- 2023State of the Art and Prospects for Halide Perovskite Nanocrystals.
- 2022Element specific atom counting at the atomic scale by combining high angle annular dark field scanning transmission electron microscopy and energy dispersive X-ray spectroscopycitations
- 2021State of the art and prospects for halide perovskite nanocrystalscitations
- 2021State of the art and prospects for halide perovskite nanocrystalscitations
- 2020Nanocrystals of Lead Chalcohalides:A Series of Kinetically Trapped Metastable Nanostructurescitations
- 2020Manganese‐Doping‐Induced Quantum Confinement within Host Perovskite Nanocrystals through Ruddlesden–Popper Defectscitations
- 2020Defect‐Directed Growth of Symmetrically Branched Metal Nanocrystalscitations
- 2020Nanocrystals of Lead Chalcohalidescitations
- 2019Fully Inorganic Ruddlesden-Popper Double Cl-I and Triple Cl-Br-I Lead Halide Perovskite Nanocrystalscitations
- 2018Chemical Cutting of Perovskite Nanowires into Single‐Photon Emissive Low‐Aspect‐Ratio CsPbX3 (X=Cl, Br, I) Nanorodscitations
- 2018Interplay between Surface Chemistry, Precursor Reactivity, and Temperature Determines Outcome of ZnS Shelling Reactions on CuInS2 Nanocrystalscitations
- 2018Interplay between Surface Chemistry, Precursor Reactivity, and Temperature Determines Outcome of ZnS Shelling Reactions on CuInS2 Nanocrystals
- 2018Interplay between surface chemistry, precursor reactivity, and temperature determines outcome of ZnS shelling reactions on CuInS 2 nanocrystals
- 2018Interplay between surface chemistry, precursor reactivity, and temperature determines outcome of ZnS shelling reactions on CuInS 2 nanocrystalscitations
- 2017From Precursor Powders to CsPbX3 Perovskite Nanowires: One‐Pot Synthesis, Growth Mechanism, and Oriented Self‐Assemblycitations
- 2017Von Vorläuferpulvern zu CsPbX3‐Perowskit‐Nanodrähten: Eintopfreaktion, Wachstumsmechanismus und gerichtete Selbstassemblierungcitations
Places of action
Organizations | Location | People |
---|
article
Fully Inorganic Ruddlesden-Popper Double Cl-I and Triple Cl-Br-I Lead Halide Perovskite Nanocrystals
Abstract
The vast majority of lead halide perovskite (LHP) nanocrystals (NCs) are currently based on either a single halide composition (CsPbCl 3 , CsPbBr 3 , and CsPbI 3 ) or an alloyed mixture of bromide with either Cl - or I - [i.e., CsPb(Br:Cl) 3 or CsPb(Br:I) 3 ]. In this work, we present the synthesis as well as a detailed optical and structural study of two halide alloying cases that have not previously been reported for LHP NCs: Cs 2 PbI 2 Cl 2 NCs and triple halide CsPb(Cl:Br:I) 3 NCs. In the case of Cs 2 PbI 2 Cl 2 , we observe for the first time NCs with a fully inorganic Ruddlesden-Popper phase (RPP) crystal structure. Unlike the well-explored organic-inorganic RPP, here, the RPP formation is triggered by the size difference between the halide ions. These NCs exhibit a strong excitonic absorption, albeit with a weak photoluminescence quantum yield (PLQY). In the case of the triple halide CsPb(Cl:Br:I) 3 composition, the NCs comprise a CsPbBr 2 Cl perovskite crystal lattice with only a small amount of incorporated iodide, which segregates at RPP planes' interfaces within the CsPb(Cl:Br:I) 3 NCs. Supported by density functional theory calculations and postsynthetic surface treatments to enhance the PLQY, we show that the combination of iodide segregation and defective RPP interfaces are most likely linked to the strong PL quenching observed in these nanostructures. In summary, this work demonstrates the limits of halide alloying in LHP NCs because a mixture that contains halide ions of very different sizes leads to the formation of defective RPP interfaces and a severe quenching of LHP NC's optical properties.