People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Popov, Georgi
University of Helsinki
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Atomic Layer Deposition of Molybdenum Carbide Thin Filmscitations
- 2024Atomic Layer Deposition of Molybdenum Carbide Thin Filmscitations
- 2024Area-Selective Etching of Poly(methyl methacrylate) Films by Catalytic Decompositioncitations
- 2023Area-Selective Etching of Poly(methyl methacrylate) Films by Catalytic Decompositioncitations
- 2023Conversion of ALD CuO Thin Films into Transparent Conductive p-Type CuI Thin Filmscitations
- 2023Atomic Layer Deposition and Pulsed Chemical Vapor Deposition of SnI2 and CsSnI3citations
- 2023Atomic Layer Deposition and Pulsed Chemical Vapor Deposition of SnI2 and CsSnI3citations
- 2022Atomic layer deposition of PbCl2, PbBr2 and mixed lead halide (Cl, Br, I) PbXnY2-n thin filmscitations
- 2022Atomic Layer Deposition of CsI and CsPbI3citations
- 2021Oxidative MLD of Conductive PEDOT Thin Films with EDOT and ReCl5 as Precursorscitations
- 2021Oxidative MLD of Conductive PEDOT Thin Films with EDOT and ReCl5 as Precursorscitations
- 2020Atomic Layer Deposition of PbS Thin Films at Low Temperaturescitations
- 2020Van der Waals epitaxy of continuous thin films of 2D materials using atomic layer deposition in low temperature and low vacuum conditionscitations
- 2019Atomic Layer Deposition of Photoconductive Cu2O Thin Filmscitations
- 2019Atomic Layer Deposition of PbI₂ Thin Filmscitations
- 2019Atomic Layer Deposition of Emerging 2D Semiconductors, HfS2 and ZrS2, for Optoelectronicscitations
- 2016Scalable Route to the Fabrication of CH3NH3PbI3 Perovskite Thin Films by Electrodeposition and Vapor Conversion.citations
Places of action
Organizations | Location | People |
---|
article
Atomic Layer Deposition of PbI₂ Thin Films
Abstract
Atomic layer deposition (ALD) enables the deposition of numerous materials in thin film form, yet there are no ALD processes for metal iodides. Herein, we demonstrate an ALD process for PbI2, a metal iodide with a two-dimensional (2D) structure that has applications in areas such as photo-detection and photovoltaics. This process uses lead silylamide Pb(btsa)(2) and SnI4 as precursors and works at temperatures below 90 degrees C, on a variety of starting surfaces and substrates such as polymers, metals, metal sulfides, and oxides. The starting surface defines the crystalline texture and morphology of the PbI2 films. Rough substrates yield porous PbI2 films with randomly oriented 2D layers, whereas smooth substrates yield dense films with 2D layers parallel to the substrate surface. Exposure to light increases conductivity of the ALD PbI2 films which enables their use in photodetectors. The films can be converted into a CH3NH3PbI3 halide perovskite, an important solar cell absorber material. For various applications, ALD offers advantages such as ability to uniformly coat large areas and simple means to control film thickness. We anticipate that the chemistry exploited in the PbI2 ALD process is also applicable for ALD of other metal halides. ; Peer reviewed