Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Achhab, Mhamed El

  • Google
  • 1
  • 11
  • 31

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Atomic Layer Deposition of Molybdenum and Tungsten Oxide Thin Films Using Heteroleptic Imido-Amidinato Precursors31citations

Places of action

Chart of shared publication
Ciftyurek, Engin
1 / 5 shared
Schierbaum, Klaus D.
1 / 3 shared
Mattinen, Miika Juhana
1 / 37 shared
Wree, Jan-Lucas
1 / 9 shared
King, Peter J.
1 / 15 shared
Leskelä, Markku Antero
1 / 124 shared
Mizohata, Kenichiro
1 / 99 shared
Ritala, Mikko
1 / 194 shared
Stegmann, Niklas
1 / 2 shared
Devi, Anjana
1 / 58 shared
Räisänen, Jyrki
1 / 41 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Ciftyurek, Engin
  • Schierbaum, Klaus D.
  • Mattinen, Miika Juhana
  • Wree, Jan-Lucas
  • King, Peter J.
  • Leskelä, Markku Antero
  • Mizohata, Kenichiro
  • Ritala, Mikko
  • Stegmann, Niklas
  • Devi, Anjana
  • Räisänen, Jyrki
OrganizationsLocationPeople

article

Atomic Layer Deposition of Molybdenum and Tungsten Oxide Thin Films Using Heteroleptic Imido-Amidinato Precursors

  • Ciftyurek, Engin
  • Schierbaum, Klaus D.
  • Mattinen, Miika Juhana
  • Wree, Jan-Lucas
  • King, Peter J.
  • Achhab, Mhamed El
  • Leskelä, Markku Antero
  • Mizohata, Kenichiro
  • Ritala, Mikko
  • Stegmann, Niklas
  • Devi, Anjana
  • Räisänen, Jyrki
Abstract

<p>Heteroleptic bis(tert-butylimido)bis(N,N'-diisopropylacetamidinato) compounds of molybdenum and tungsten are introduced as precursors for atomic layer deposition of tungsten and molybdenum oxide thin films using ozone as the oxygen source. Both precursors have similar thermal properties but exhibit different growth behaviors. With the molybdenum precursor, high growth rates up to 2 angstrom/cycle at 300 degrees C and extremely uniform films are obtained, although the surface reactions are not completely saturative. The corresponding tungsten precursor enables saturative film growth with a lower growth rate of 0.45 angstrom/cycle at 300 degrees C. Highly pure films of both metal oxides are deposited, and their phase as well as stoichiometry can be tuned by changing the deposition conditions. The WO films the crystallize as gamma-WO3 at 300 degrees C and above, whereas films deposited at lower temperatures are amorphous. Molybdenum oxide can be deposited as either amorphous (= 325 degrees C) films. MoOr films are further characterized by synchrotron photoemission spectroscopy and temperature-dependent resistivity measurements. A suboxide MoOx film deposited at 275 degrees C is demonstrated to serve as an efficient hydrogen gas sensor at a low operating temperature of 120 degrees C.</p>

Topics
  • impedance spectroscopy
  • surface
  • compound
  • molybdenum
  • amorphous
  • resistivity
  • phase
  • thin film
  • Oxygen
  • Hydrogen
  • tungsten
  • atomic layer deposition