Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Marschelke, Claudia

  • Google
  • 1
  • 8
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Supercooled Water Drops Do Not Freeze During Impact on Hybrid Janus Particle-Based Surfaces17citations

Places of action

Chart of shared publication
Tee, Hisaschi T.
1 / 1 shared
Wurm, Frederik R.
1 / 42 shared
Otto, Thomas
1 / 16 shared
Schwarzer, Madeleine
1 / 1 shared
Schremb, Markus
1 / 1 shared
Synytska, Alla
1 / 4 shared
Tropea, Cameron
1 / 8 shared
Roisman, Ilia V.
1 / 7 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Tee, Hisaschi T.
  • Wurm, Frederik R.
  • Otto, Thomas
  • Schwarzer, Madeleine
  • Schremb, Markus
  • Synytska, Alla
  • Tropea, Cameron
  • Roisman, Ilia V.
OrganizationsLocationPeople

article

Supercooled Water Drops Do Not Freeze During Impact on Hybrid Janus Particle-Based Surfaces

  • Tee, Hisaschi T.
  • Marschelke, Claudia
  • Wurm, Frederik R.
  • Otto, Thomas
  • Schwarzer, Madeleine
  • Schremb, Markus
  • Synytska, Alla
  • Tropea, Cameron
  • Roisman, Ilia V.
Abstract

Icing of various surfaces is often a result of the collision of supercooled water drops with substrates. Ice formation from supercooled water drops is initiated by nucleation when the size of an ice embryo reaches a critical value. The lack of controlling the inception of heterogeneous nucleation and the rate of solidification, which depend on the properties of the substrate, temperature, and impact parameters of the liquid drop, poses a very serious challenge to the design of effective ice-preventing materials. In this exploratory experimental study, we show how a significant nucleation delay during impact of supercooled water drops can be achieved by tuning the properties of the substrate and, specifically, by introducing chemical and topographical heterogeneities on the surfaces formed by a mixture of either polymer-coated hydrophilic and hydrophobic particles or Janus particles. We have discovered that the nucleation rate during drop impact is significantly reduced on heterogeneous surfaces formed by a mixture of hydrophilic and hydrophobic particles. Exceptionally, freezing is completely prevented on surfaces made of amphiphilic Janus particles. Even after a repetition of 100 drop impact experiments, no single drop froze at all. After impact of the supercooled water drops, a rebound occurs, and afterwards smaller secondary drops are formed, which can be easily removed. Moreover, the designed surfaces demonstrate good scratch resistance and robustness. The presented findings open a promising pathway for the rational design of effective passive ice-preventing coatings using Janus particles as building blocks.

Topics
  • impedance spectroscopy
  • surface
  • polymer
  • experiment
  • solidification