People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Eames, Christopher
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2018Crystal Structures, Local Atomic Environments, and Ion Diffusion Mechanisms of Scandium-Substituted Sodium Superionic Conductor (NASICON) Solid Electrolytescitations
- 2017Mechanisms of Lithium Intercalation and Conversion Processes in Organic–Inorganic Halide Perovskitescitations
- 2017Structural, Electronic and Transport Properties of Hybrid SrTiO3-Graphene and Carbon Nanoribbon Interfacescitations
- 2017Evidence of enhanced ion transport in Li-rich silicate intercalation materialscitations
- 2014Lithium migration pathways and van der Waals effects in the LiFeSO 4 OH battery materialcitations
Places of action
Organizations | Location | People |
---|
article
Structural, Electronic and Transport Properties of Hybrid SrTiO3-Graphene and Carbon Nanoribbon Interfaces
Abstract
Hybrid materials composed of different functional structural units offer the possibility of tuning both the thermal and electronic properties of a material independently. Using quantum mechanical calculations, we investigate the change of electronic and thermoelectric transport properties of graphene and hydrogen terminated carbon-nanoribbons (CNR) when these are placed on the SrTiO3 (001) surface (STO). We predict that both p-type and n-type composite materials can be achieved by coupling graphene/CNR to different surface terminations of STO. We show that the electronic properties of graphene and CNR are significantly altered on SrO-terminated STO but are preserved upon interaction with TiO2-terminated STO and that CNRs possess distinct electronic states around the Fermi level due to their quasi-one-dimensional nature, leading to a much higher calculated Seebeck coefficient than that of a pristine graphene sheet. Moreover, our calculations reveal that in the TiO2-SrTiO3/CNR system there is a favourable electronic level alignment between the CNR and STO, where the highest occupied molecular orbital of the CNR is positioned in the middle of the STO band gap, resembling n-type doping of the substrate. Our results offer design principles to guide the engineering of future hybrid thermoelectric materials and, more generally, nano-electronic materials comprising oxide and graphitic components.