People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fulton, John L.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2018Sinter-Resistant Platinum Catalyst Supported by Metal–Organic Frameworkcitations
- 2017Bridging Zirconia Nodes within a Metal-Organic Framework via Catalytic Ni-Hydroxo Clusters to Form Heterobimetallic Nanowirescitations
- 2017Methane Oxidation to Methanol Catalyzed by Cu-Oxo Clusters Stabilized in NU-1000 Metal-Organic Frameworkcitations
- 2017Atomic Layer Deposition in a Metal-Organic Frameworkcitations
- 2016Sintering-Resistant Single-Site Nickel Catalyst Supported by Metal-Organic Frameworkcitations
Places of action
Organizations | Location | People |
---|
article
Atomic Layer Deposition in a Metal-Organic Framework
Abstract
<p>NU-1000, a zirconium-based metal-organic framework (MOF) featuring mesoporous channels, has been postsynthetically metalated via atomic layer deposition in a MOF (AIM) employing dimethylaluminum iso-propoxide ([AlMe<sub>2</sub>O<sup>i</sup>Pr]<sub>2</sub>, DMAI), a milder precursor than widely used trimethylaluminum (AlMe<sub>3</sub>, TMA). The aluminum-modified NU-1000 (Al-NU-1000) has been characterized with a comprehensive suite of techniques that points to the formation of aluminum oxide clusters well dispersed through the framework and stabilized by confinement within small pores intrinsic to the NU-1000 structure. Experimental evidence allows for identification of spectroscopic similarities between Al-NU-1000 and γ-Al<sub>2</sub>O<sub>3</sub>. Density functional theory modeling provides structures and simulated spectra, the relevance of which can be assessed via comparison to experimental IR and EXAFS data. The catalytic performance of Al-NU-1000 has been benchmarked against γ-Al<sub>2</sub>O<sub>3</sub>, with promising results in terms of selectivity.</p>