People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mäntymäki, Miia
University of Helsinki
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Atomic Layer Deposition of ScF3 and ScxAl yFz Thin Filmscitations
- 2024Stabilized Nickel-Rich-Layered Oxide Electrodes for High-Performance Lithium-Ion Batteriescitations
- 2023Electrochemical reduction of carbon dioxide to formate in a flow cell on CuSx grown by atomic layer depositioncitations
- 2022Atomic layer deposition of GdF 3 thin filmscitations
- 2022Atomic layer deposition of GdF3 thin filmscitations
- 2022Atomic layer deposition of GdF3thin filmscitations
- 2018Metal Fluorides as Lithium-Ion Battery Materials: An Atomic Layer Deposition Perspectivecitations
- 2017Preparation of Lithium Containing Oxides by the Solid State Reaction of Atomic Layer Deposited Thin Filmscitations
Places of action
Organizations | Location | People |
---|
article
Preparation of Lithium Containing Oxides by the Solid State Reaction of Atomic Layer Deposited Thin Films
Abstract
<p>Lithium containing multicomponent oxides are important materials for both lithium-ion batteries and optical applications. In most cases thin films of these materials are desired. Atomic layer deposition (ALD) is a thin film deposition method that is known to deposit high quality films by sequential self-limiting surface reactions. However, the reactivity of lithium ions during the deposition process can pose challenges for the control of the film growth and even destroy the selflimiting nature of ALD completely. In this paper, we have studied the combination of atomic layer deposition and solid state reactions for the generation of lithium containing multicomponent oxide films. Atomic layer deposited transition metal oxide thin films were covered with ALD-grown lithium carbonate, and the films were annealed to produce lithium tantalate, titanate, and niobate. Lithium carbonate was chosen as the source of lithium because it is easy to deposit by ALD and can be handled in air. The films were analyzed as-deposited and after annealing using grazing incidence X-ray diffraction (GIXRD), field emission scanning electron microscopy (FESEM), and time-of-flight elastic recoil detection analysis (ToF-ERDA). By this method we were able to produce crystalline and very close to stoichiometric films of LiTaO3, Li2TiO3, and LiNbO3. The films showed only small amounts of carbon and hydrogen impurities after annealing. After prolonged annealing at high temperatures, lithium silicates began to form as a result of lithium ions reacting with the silicon substrates.</p>