People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Booth, Timothy
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Mapping nanoscale carrier confinement in polycrystalline graphene by terahertz spectroscopycitations
- 2023Photon superbunching in cathodoluminescence of excitons in WS2 monolayercitations
- 2022Chemical Vapor-Deposited Graphene on Ultraflat Copper Foils for van der Waals Hetero-Assemblycitations
- 2017Sputtering an exterior metal coating on copper enclosure for large-scale growth of single-crystalline graphenecitations
- 2016Copper Oxidation through Nucleation Sites of Chemical Vapor Deposited Graphenecitations
- 2014Pattern recognition approach to quantify the atomic structure of graphenecitations
- 2013Graphene Based Terahertz Absorber Designed With Effective Surface Conductivity Approach
- 2011In situ transmission electron microscopy analyses of thermally annealed self catalyzed GaAs nanowires grown by molecular beam epitaxy
- 2010Customizable in situ TEM devices fabricated in freestanding membranes by focused ion beam millingcitations
Places of action
Organizations | Location | People |
---|
article
Copper Oxidation through Nucleation Sites of Chemical Vapor Deposited Graphene
Abstract
We investigate the nucleation defect-triggered oxidation of Cu covered by CVD graphene during postannealing in air. The results reveal that different growth conditions may induce imperfect nucleation of graphene, and cause creation of defects near the nucleation point such as pin holes and amorphous carbon. These defects would serve as a pathway for the diffusion of 0<sub>2</sub> during thermal annealing, allowing oxidation of Cu to progress gradually from the nucleation center toward the growth edge. The oxidation process follows the graphene morphology closely; the shape of the oxidized area of Cu has a striking resemblance to that of the graphene flakes. Our work demonstrates that inferior graphene nucleation in CVD processes can compromise the oxidation resistance of a graphene-coated Cu substrate, and indirectly reveal the structure and integrity of graphene, which is of fundamental importance for the quality monitoring and control of graphene growth, for understanding the mechanisms of graphene nucleation and growth, and has implications for graphene's use in electronic and passivation applications.