Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dulaney, Austin R.

  • Google
  • 2
  • 4
  • 42

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2018Glass Transition and Self-Diffusion of Unentangled Polymer Melts Nanoconfined by Different Interfaces22citations
  • 2015Bidirectional Control of Flow in Thin Polymer Films by Photochemically Manipulating Surface Tension20citations

Places of action

Chart of shared publication
Kim, Chae Bin
2 / 9 shared
Katsumata, Reika
1 / 4 shared
Janes, Dustin W.
1 / 10 shared
Zhou, Sunshine X.
1 / 4 shared
Chart of publication period
2018
2015

Co-Authors (by relevance)

  • Kim, Chae Bin
  • Katsumata, Reika
  • Janes, Dustin W.
  • Zhou, Sunshine X.
OrganizationsLocationPeople

article

Bidirectional Control of Flow in Thin Polymer Films by Photochemically Manipulating Surface Tension

  • Janes, Dustin W.
  • Kim, Chae Bin
  • Dulaney, Austin R.
  • Zhou, Sunshine X.
Abstract

<p>The Marangoni effect causes liquids to flow toward localized regions of higher surface tension. In a thin film, such flow results in smooth thickness variations and may represent a practically useful route to manufacture topographically patterned surfaces. An especially versatile material for this application should be able to be spatially programmed to possess regions of higher or lower relative surface tension so that the direction of flow into or out of those areas could be directed with precision. To this end, we describe here a photopolymer whose melt-state surface tension can be selectively raised or lowered in the light exposed regions depending on the wavelength and dose of applied light. The direction of Marangoni flow into or out of the irradiated areas agreed with expected surface tension changes for photochemical transformations characterized by a variety of spectroscopic techniques and chromatographic experiments. The maximum film thickness variations achieved in this work are over 200 nm, which developed after only 5 min of thermal annealing. Both types of flow patterns can even be programmed sequentially into the same film and developed in a single thermal annealing step, which to our knowledge represents the first example of harnessing photochemical stimuli to bidirectionally control flow. (Figure Presented).</p>

Topics
  • surface
  • polymer
  • experiment
  • thin film
  • melt
  • annealing