Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kazyak, Eric

  • Google
  • 1
  • 5
  • 44

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015Hierarchical ZnO Nanowire Growth with Tunable Orientations on Versatile Substrates Using Atomic Layer Deposition Seeding44citations

Places of action

Chart of shared publication
Schleputz, Christian M.
1 / 2 shared
Bielinski, Ashley R.
1 / 1 shared
Wood, Kevin N.
1 / 1 shared
Dasgupta, Neil P.
1 / 3 shared
Jung, Hee Joon
1 / 1 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Schleputz, Christian M.
  • Bielinski, Ashley R.
  • Wood, Kevin N.
  • Dasgupta, Neil P.
  • Jung, Hee Joon
OrganizationsLocationPeople

article

Hierarchical ZnO Nanowire Growth with Tunable Orientations on Versatile Substrates Using Atomic Layer Deposition Seeding

  • Schleputz, Christian M.
  • Kazyak, Eric
  • Bielinski, Ashley R.
  • Wood, Kevin N.
  • Dasgupta, Neil P.
  • Jung, Hee Joon
Abstract

The ability to synthesize semiconductor nanowires with deterministic and tunable control of orientation and morphology on a wide range of substrates, while high precision and repeatability are maintained, is a challenge currently faced for the development of many nanoscale material systems. Here we show that atomic layer deposition (ALD) presents a reliable method of surface and interfacial modification to guide nanowire orientation on a variety of substrate materials and geometries, including high-aspect-ratio, three-dimensional templates. We demonstrate control of the orientation and geometric properties of hydrothermally grown single crystalline ZnO nanowires via the deposition of a ZnO seed layer by ALD. The crystallographic texture and roughness of the seed layer result in tunable preferred nanowire orientations and densities for identical hydrothermal growth conditions. The structural and chemical relationship between the ALD layers and nanowires was investigated with synchrotron X-ray diffraction, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy to elucidate the underlying mechanisms of orientation and morphology control. The resulting control parameters were utilized to produce hierarchical nanostructures with tunable properties on a wide range of substrates, including vertical micropillars, paper fibers, porous polymer membranes, and biological substrates. This illustrates the power of ALD for interfacial engineering of heterogeneous material systems at the nanoscale, to provide a highly controlled and scalable seeding method for bottom-up synthesis of integrated nanosystems.

Topics
  • porous
  • impedance spectroscopy
  • surface
  • polymer
  • x-ray diffraction
  • x-ray photoelectron spectroscopy
  • semiconductor
  • transmission electron microscopy
  • texture
  • atomic layer deposition