Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rinke, Patrick

  • Google
  • 8
  • 34
  • 237

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2023Updates to the DScribe library : New descriptors and derivatives54citations
  • 2023Screening Mixed-Metal Sn2M(III)Ch2X3 Chalcohalides for Photovoltaic Applications6citations
  • 2022Compositional engineering of perovskites with machine learning12citations
  • 2022Compositional engineering of perovskites with machine learning12citations
  • 2016Multiscale approach to the electronic structure of doped semiconductor surfaces32citations
  • 2016Density functional theory study of the α-γ phase transition in cerium: Role of electron correlation and f -orbital localization28citations
  • 2015Multiscale approach to the electronic structure of doped semiconductor surfaces32citations
  • 2015Evidence for photogenerated intermediate hole polarons in ZnO61citations

Places of action

Chart of shared publication
Morooka, Eiaki V.
1 / 1 shared
Homm, Henrietta
1 / 1 shared
Jäger, Marc O. J.
1 / 1 shared
Todorović, Milica
1 / 1 shared
Laakso, Jarno
3 / 3 shared
Himanen, Lauri
1 / 1 shared
Henkel, Pascal
1 / 2 shared
Vivo, Paola
1 / 46 shared
Li, Jingrui
2 / 2 shared
Grandhi, G. Krishnamurthy
1 / 17 shared
Todorovic, Milica
2 / 2 shared
Zhang, Guo-Xu
2 / 3 shared
Heimel, G.
1 / 1 shared
Kronik, L.
1 / 4 shared
Scheffler, M.
1 / 9 shared
Hofmann, O. T.
1 / 2 shared
Sinai, O.
1 / 1 shared
Scheffler, Matthias
3 / 24 shared
Casadei, Marco
1 / 1 shared
Rubio, Angel
1 / 20 shared
Ren, Xinguo
1 / 1 shared
Sinai, Ofer
1 / 2 shared
Heimel, Georg
1 / 2 shared
Hofmann, Oliver T.
1 / 3 shared
Kronik, Leeor
1 / 20 shared
Heissler, Stefan
1 / 11 shared
Carbogno, Christian
1 / 8 shared
Buchholz, Maria
1 / 7 shared
Woell, Christof
1 / 51 shared
Bebensee, Fabian
1 / 4 shared
Shang, Honghui
1 / 1 shared
Sezen, Hikmet
1 / 9 shared
Yang, Chengwu
1 / 9 shared
Nefedov, Alexei
1 / 31 shared
Chart of publication period
2023
2022
2016
2015

Co-Authors (by relevance)

  • Morooka, Eiaki V.
  • Homm, Henrietta
  • Jäger, Marc O. J.
  • Todorović, Milica
  • Laakso, Jarno
  • Himanen, Lauri
  • Henkel, Pascal
  • Vivo, Paola
  • Li, Jingrui
  • Grandhi, G. Krishnamurthy
  • Todorovic, Milica
  • Zhang, Guo-Xu
  • Heimel, G.
  • Kronik, L.
  • Scheffler, M.
  • Hofmann, O. T.
  • Sinai, O.
  • Scheffler, Matthias
  • Casadei, Marco
  • Rubio, Angel
  • Ren, Xinguo
  • Sinai, Ofer
  • Heimel, Georg
  • Hofmann, Oliver T.
  • Kronik, Leeor
  • Heissler, Stefan
  • Carbogno, Christian
  • Buchholz, Maria
  • Woell, Christof
  • Bebensee, Fabian
  • Shang, Honghui
  • Sezen, Hikmet
  • Yang, Chengwu
  • Nefedov, Alexei
OrganizationsLocationPeople

article

Screening Mixed-Metal Sn2M(III)Ch2X3 Chalcohalides for Photovoltaic Applications

  • Henkel, Pascal
  • Rinke, Patrick
  • Vivo, Paola
  • Li, Jingrui
  • Grandhi, G. Krishnamurthy
Abstract

Quaternary mixed-metal chalcohalides (Sn2M(III)Ch2X3) are emerging as promising lead-free, perovskite-inspired photovoltaic absorbers. Motivated by recent developments of a first Sn2SbS2I3-based device, we used density functional theory to identify lead-free Sn2M(III)Ch2X3 materials that are structurally and energetically stable within Cmcm, Cmc21, and P21/c space groups and have a band gap in the range of 0.7-2.0 eV to cover outdoor and indoor photovoltaic applications. A total of 27 Sn2M(III)Ch2X3 materials were studied, including Sb, Bi, and In for the M(III)-site, S, Se, and Te for the Ch-site, and Cl, Br, and I for the X-site. We identified 12 materials with a direct band gap that meet our requirements, namely, Sn2InS2Br3, Sn2InS2I3, Sn2InSe2Cl3, Sn2InSe2Br3, Sn2InTe2Br3, Sn2InTe2Cl3, Sn2SbS2I3, Sn2SbSe2Cl3, Sn2SbSe2I3, Sn2SbTe2Cl3, Sn2BiS2I3, and Sn2BiTe2Cl3. A database scan reveals that 9 of 12 are new compositions. For all 27 materials, P21/c is the thermodynamically preferred structure, followed by Cmc21. In Cmcm and Cmc21, mainly direct gaps occur, whereas indirect gaps occur in P21/c. To open up the possibility of band gap tuning in the future, we identified 12 promising Sn2M(III)1-aM(III)′aCh2-bCh′bX3-cX′c alloys, which fulfill our requirements, and an additional 69 materials by combining direct and indirect band gap compounds. ; Peer reviewed

Topics
  • density
  • perovskite
  • impedance spectroscopy
  • compound
  • theory
  • density functional theory
  • additive manufacturing
  • space group