People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kriechbaum, Manfred
European Commission
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2023On The Multiscale Structure and Morphology of PVDF‐HFP@MOF Membranes in The Scope of Water Remediation Applicationscitations
- 2023On The Multiscale Structure and Morphology of PVDF-HFP@MOF Membranes in The Scope of Water Remediation Applicationscitations
- 2023Micelle Formation in Aqueous Solutions of the Cholesterol-Based Detergent Chobimalt Studied by Small-Angle Scattering
- 2023Poly(ethylene oxide)-block-poly(hexyl acrylate) Copolymers as Templates for Large Mesopore Sizes─A Detailed Porosity Analysiscitations
- 2023Lignin-Derived Mesoporous Carbon for Sodium-Ion Batteriescitations
- 2023The Nanostructured Self-Assembly and Thermoresponsiveness in Water of Amphiphilic Copolymers Carrying Oligoethylene Glycol and Polysiloxane Side Chainscitations
- 2023Synthesis and Characterization of Citric Acid-Modified Iron Oxide Nanoparticles Prepared with Electrohydraulic Discharge Treatmentcitations
- 2022Quantitative study on the face shear piezoelectricity and its relaxation in uniaxially-drawn and annealed poly-l-lactic acidcitations
- 2021Stable aqueous dispersions of bare and double layer functionalized superparamagnetic iron oxide nanoparticles for biomedical applicationscitations
- 2021Folic acid conjugation of magnetite nanoparticles using pulsed electrohydraulic dischargescitations
- 2020The Structural Integrity of the Model Lipid Membrane during Induced Lipid Peroxidationcitations
- 2018Synthesis and in vivo investigation of therapeutic effect of magnetite nanofluids in mouse prostate cancer model
- 2018High Hydrostatic Pressure Induces a Lipid Phase Transition and Molecular Rearrangements in Low-Density Lipoprotein Nanoparticlescitations
- 2018Mesostructure and physical properties of aqueous mixtures of the ionic liquid 1-ethyl-3-methyl imidazolium octyl sulfate doped with divalent sulfate salts in the liquid and the mesomorphic statescitations
- 2018Guerbet glycolipids from mannosecitations
- 2014Order vs. disorder — a huge increase in ionic conductivity of nanocrystalline LiAlO2 embedded in an amorphous-like matrix of lithium aluminatecitations
Places of action
Organizations | Location | People |
---|
article
Poly(ethylene oxide)-block-poly(hexyl acrylate) Copolymers as Templates for Large Mesopore Sizes─A Detailed Porosity Analysis
Abstract
<p>Mesoporous materials with defined pore geometry act as important models for porous substances being applied in various fields of materials research due to their large surface area─from catalysis to coatings and from solar cells to batteries and capacitors. Thus, understanding structure-property relationships requires the capability of deliberately and precisely tuning the mesoporosity, i.e., pore diameter, connectivity, and wall thickness. However, especially for the interesting pore size range between 35 and 70 nm, only a few convenient block copolymer templates are available using micellar self-assembly. In this study, we synthesized poly(ethylene oxide)-block-poly(hexyl acrylate) copolymers (PEO-b-PHA) by a supplemental activator reducing agent atom transfer radical polymerization (SARA ATRP) and employed them as soft templates for the preparation of ordered mesoporous metal oxide powders with spherical mesopores of ca. 40 nm in diameter, as shown by scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), and small-angle X-ray scattering (SAXS). With the aid of argon physisorption, STEM-based tomography, and time-of-flight secondary ion mass spectrometry (ToF-SIMS), we performed in-depth elucidation of pore shape and their mutual connection. In the case of mesoporous silica, 40 nm spherical mesopores are connected to 3-4 adjacent pores by 15 nm pore windows as well as 1-2 nm-sized micropores. These micropores seem to originate from single PEO chains penetrating the 17 nm thick pore wall. Compared to such mesoporous silica, mesoporous, crystalline zirconia possesses significantly higher pore accessibility. Furthermore, we prepared a set of PEO-b-PHA block copolymers with different block lengths, showing that mainly the PHA block length governs the mesopore size and thus enables mesopore size tuning. These results highlight that PEO-b-PHA is a promising template for the preparation of mesoporous metal oxides (in particular, crystalline ones) with tailored mesopore sizes, which enables systematic studies on property-porosity relationships.</p>