Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Minjauw, Matthias

  • Google
  • 11
  • 45
  • 97

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2024Atomic layer deposition for tuning the surface chemical composition of nickel iron phosphates for oxygen evolution reaction in alkaline electrolyzers4citations
  • 2024Controlling Pt nanoparticle sintering by sub-monolayer MgO ALD thin films4citations
  • 2022Atomic layer deposition of ternary ruthenates by combining metalorganic precursors with RuO4 as the co-reactant4citations
  • 2022Shuffling Atomic Layer Deposition Gas Sequences to Modulate Bimetallic Thin Films and Nanoparticle Properties4citations
  • 2022Shuffling atomic layer deposition gas sequences to modulate bimetallic thin films and nanoparticle properties4citations
  • 2022Atomic layer deposition of ruthenium dioxide based on redox reactions between alcohols and ruthenium tetroxide13citations
  • 2022Plasma-enhanced atomic layer deposition of nickel and cobalt phosphate for lithium ion batteries8citations
  • 2021In situ study of noble metal atomic layer deposition processes using grazing incidence small angle X-ray scatteringcitations
  • 2021Emergence of Metallic Conductivity in Ordered One-Dimensional Coordination Polymer Thin Films upon Reductive Doping6citations
  • 2019Atomic layer deposition of thin films as model electrodes : a case study of the synergistic effect in Fe2O3-SnO25citations
  • 2016Atomic layer deposition route to tailor nanoalloys of noble and non-noble metals45citations

Places of action

Chart of shared publication
Detavernier, Christophe
11 / 72 shared
Blomme, Ruben
2 / 2 shared
Vereecken, Philippe
2 / 21 shared
Dendooven, Jolien
9 / 34 shared
Henderick, Lowie
2 / 5 shared
Adriaens, Mieke
1 / 5 shared
Ramesh, Rahul
1 / 1 shared
Rosenthal, Martin
1 / 17 shared
Galvita, Vladimir
2 / 26 shared
Zhiwei, Zhang
1 / 1 shared
Poelman, Hilde
4 / 26 shared
Li, Jin
1 / 8 shared
Poonkottil, Nithin
2 / 5 shared
Brüner, Philipp
1 / 2 shared
Filez, Matthias
4 / 12 shared
Solano, Eduardo
3 / 27 shared
Sajavaara, Timo
1 / 55 shared
Feng, Ji-Yu
4 / 6 shared
Van Daele, Michiel
3 / 3 shared
Solano Minuesa, Eduardo
3 / 13 shared
Bals, Sara
2 / 93 shared
Li, Chen
2 / 10 shared
Karuparambil Ramachandran, Ranjith
4 / 6 shared
Nisula, Mikko
2 / 4 shared
Checchia, Stefano
1 / 13 shared
Franquet, Alexis
1 / 12 shared
Meersschaut, Johan
1 / 11 shared
Keukelier, Jonas
1 / 3 shared
Hermida-Merino, D.
1 / 7 shared
Coati, A.
1 / 10 shared
Solano, E.
1 / 4 shared
Poelman, Dirk
1 / 27 shared
Voort, Pascal Van Der
1 / 4 shared
Karttunen, Antti J.
1 / 40 shared
Karppinen, Maarit
1 / 60 shared
Tewari, Girish C.
1 / 12 shared
Jena, Himanshu Sekhar
1 / 2 shared
Kint, Jeroen
1 / 1 shared
Zhao, Bo
1 / 5 shared
Mattelaer, Felix
1 / 4 shared
Hermida-Merino, Daniel
1 / 24 shared
Bras, Wim
1 / 15 shared
Marin, Guy
1 / 29 shared
Fonda, Emiliano
1 / 12 shared
Devloo-Casier, Kilian
1 / 3 shared
Chart of publication period
2024
2022
2021
2019
2016

Co-Authors (by relevance)

  • Detavernier, Christophe
  • Blomme, Ruben
  • Vereecken, Philippe
  • Dendooven, Jolien
  • Henderick, Lowie
  • Adriaens, Mieke
  • Ramesh, Rahul
  • Rosenthal, Martin
  • Galvita, Vladimir
  • Zhiwei, Zhang
  • Poelman, Hilde
  • Li, Jin
  • Poonkottil, Nithin
  • Brüner, Philipp
  • Filez, Matthias
  • Solano, Eduardo
  • Sajavaara, Timo
  • Feng, Ji-Yu
  • Van Daele, Michiel
  • Solano Minuesa, Eduardo
  • Bals, Sara
  • Li, Chen
  • Karuparambil Ramachandran, Ranjith
  • Nisula, Mikko
  • Checchia, Stefano
  • Franquet, Alexis
  • Meersschaut, Johan
  • Keukelier, Jonas
  • Hermida-Merino, D.
  • Coati, A.
  • Solano, E.
  • Poelman, Dirk
  • Voort, Pascal Van Der
  • Karttunen, Antti J.
  • Karppinen, Maarit
  • Tewari, Girish C.
  • Jena, Himanshu Sekhar
  • Kint, Jeroen
  • Zhao, Bo
  • Mattelaer, Felix
  • Hermida-Merino, Daniel
  • Bras, Wim
  • Marin, Guy
  • Fonda, Emiliano
  • Devloo-Casier, Kilian
OrganizationsLocationPeople

article

Atomic layer deposition of ruthenium dioxide based on redox reactions between alcohols and ruthenium tetroxide

  • Nisula, Mikko
  • Minjauw, Matthias
  • Detavernier, Christophe
  • Checchia, Stefano
  • Dendooven, Jolien
  • Franquet, Alexis
  • Solano, Eduardo
Abstract

Atomic layer deposition (ALD) of ruthenium dioxide (RuO2) thin films using metalorganic precursors and O-2 can be challenging because the O-2 dose needs to be precisely tuned and significant nucleation delays are often observed. Here, we present a low-temperature ALD process for RuO2 combining the inorganic precursor ruthenium tetroxide (RuO4) with alcohols. The process exhibits immediate linear growth at 1 angstrom/cycle when methanol is used as a reactant at deposition temperatures in the range of 60-120 degrees C. When other alcohols are used, the growth per cycle increases with an increasing number of carbon atoms in the alcohol chain. Based on X-ray photoelectron spectroscopy (XPS) and conventional X-ray diffraction, the deposited material is thought to be amorphous RuO2. Interestingly, pair distribution function (PDF) analysis shows that a structural order exists up to 2-3 nm. Modeling of the PDF suggests the presence of Ru nanocrystallites within a predominantly amorphous RuO2 matrix. Thermal annealing to 420 degrees C in an inert atmosphere crystallizes the films into rutile RuO2. The films are conductive, as is evident from a resistivity value of 230 mu Omega.cm for a 20 nm film grown with methanol, and the resistivity decreased to 120 mu Omega.cm after crystallization. Finally, based on in situ mass spectrometry, in situ infrared spectroscopy, and in vacuo XPS studies, an ALD reaction mechanism is proposed, involving partial reduction of the RuO2 surface by the alcohol followed by reoxidation of the surface by RuO4 and concomitant deposition of RuO2.

Topics
  • impedance spectroscopy
  • surface
  • amorphous
  • Carbon
  • resistivity
  • x-ray diffraction
  • thin film
  • x-ray photoelectron spectroscopy
  • mass spectrometry
  • annealing
  • crystallization
  • alcohol
  • spectrometry
  • infrared spectroscopy
  • atomic layer deposition
  • Ruthenium