Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pallini, F.

  • Google
  • 5
  • 28
  • 23

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024Solubilizing Benzodifuranone-Based Conjugated Copolymers with Single-Oxygen-Containing Branched Side Chains3citations
  • 2024Understanding How to Control Efficiency of Benzimidazoline Based n-type Dopants: A Structural Approachcitations
  • 2023An Iminostilbene Functionalized Benzimidazoline for Enhanced n-Type Solution Doping of Semiconducting Polymers for Organic Thermoelectrics8citations
  • 2022Effects of Molecular Encapsulation on the Photophysical and Charge Transport Properties of a Naphthalene Diimide Bithiophene Copolymer6citations
  • 2022Effects of Molecular Encapsulation on the Photophysical and Charge Transport Properties of a Naphthalene Diimide Bithiophene Copolymer6citations

Places of action

Chart of shared publication
N., J. Pataki
1 / 1 shared
Guchait, S.
1 / 1 shared
Mcneill, C.
1 / 4 shared
Caironi, M.
4 / 12 shared
Rossi, P.
2 / 4 shared
D., R. Hinojosa
1 / 1 shared
Erhardt, A.
1 / 1 shared
Sommer, M.
1 / 17 shared
Muller, C.
1 / 7 shared
Kim, B.
1 / 9 shared
Nguyen, T. Q.
1 / 3 shared
Scaccabarozzi, D. A.
1 / 1 shared
Mattioli, G.
1 / 2 shared
Beverina, L.
4 / 9 shared
Mattiello, S.
2 / 5 shared
Sassi, M.
1 / 1 shared
Coco, G.
1 / 1 shared
L., Tan W.
1 / 1 shared
R., Mcneill C.
1 / 2 shared
Lanzani, G.
1 / 13 shared
Cassinelli, M.
1 / 1 shared
Mezzomo, L.
1 / 5 shared
Pecorario, S.
2 / 2 shared
Bronstein, H.
2 / 11 shared
D., Scaccabarozzi A.
1 / 10 shared
Royakkers, J.
1 / 1 shared
Scaccabarozzi, Ad
1 / 2 shared
Royakkers, Jeroen
1 / 3 shared
Chart of publication period
2024
2023
2022

Co-Authors (by relevance)

  • N., J. Pataki
  • Guchait, S.
  • Mcneill, C.
  • Caironi, M.
  • Rossi, P.
  • D., R. Hinojosa
  • Erhardt, A.
  • Sommer, M.
  • Muller, C.
  • Kim, B.
  • Nguyen, T. Q.
  • Scaccabarozzi, D. A.
  • Mattioli, G.
  • Beverina, L.
  • Mattiello, S.
  • Sassi, M.
  • Coco, G.
  • L., Tan W.
  • R., Mcneill C.
  • Lanzani, G.
  • Cassinelli, M.
  • Mezzomo, L.
  • Pecorario, S.
  • Bronstein, H.
  • D., Scaccabarozzi A.
  • Royakkers, J.
  • Scaccabarozzi, Ad
  • Royakkers, Jeroen
OrganizationsLocationPeople

article

Effects of Molecular Encapsulation on the Photophysical and Charge Transport Properties of a Naphthalene Diimide Bithiophene Copolymer

  • Pecorario, S.
  • Bronstein, H.
  • Scaccabarozzi, Ad
  • Royakkers, Jeroen
  • Caironi, M.
  • Beverina, L.
  • Pallini, F.
Abstract

Engineering the molecular structure of conjugated polymers is key to advancing the field of organic electronics. In this work, we synthesized a molecularly encapsulated version of the naphthalene diimide bithiophene copolymer PNDIT2, which is among the most popular high charge mobility organic semiconductors in n-type field-effect transistors and non-fullerene acceptors in organic photovoltaic blends. The encapsulating macrocycles shield the bithiophene units while leaving the naphthalene diimide units available for intermolecular interactions. With respect to PNDIT2, the encapsulated counterpart displays an increased backbone planarity. Molecular encapsulation prevents preaggregation of the polymer chains in common organic solvents, while it permits π-stacking in the solid state and promotes thin film crystallinity through an intermolecular-lock mechanism. Consequently, n-type semiconducting behavior is retained in field-effect transistors, although charge mobility is lower than in PNDIT2 due to the absence of the fibrillar microstructure that originates from preaggregation in solution. Hence, molecularly encapsulating conjugated polymers represent a promising chemical strategy to tune the molecular interaction in solution and the backbone conformation and to consequently control the nanomorphology of casted films without altering the electronic structure of the core polymer.

Topics
  • impedance spectroscopy
  • mobility
  • thin film
  • semiconductor
  • texture
  • copolymer
  • crystallinity
  • molecular structure