People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jalkanen, Pasi
University of Helsinki
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2023Conversion of ALD CuO Thin Films into Transparent Conductive p-Type CuI Thin Filmscitations
- 2023Hydrogen isotope exchange experiments in high entropy alloy WMoTaNbVcitations
- 2022Irradiation Damage Independent Deuterium Retention in WMoTaNbVcitations
- 2022Atomic layer deposition of PbCl2, PbBr2 and mixed lead halide (Cl, Br, I) PbXnY2-n thin filmscitations
- 2022Atomic Layer Deposition of CsI and CsPbI3citations
- 2020Preparation and In vivo Evaluation of Red Blood Cell Membrane Coated Porous Silicon Nanoparticles Implanted with 155Tbcitations
- 2020Atomic Layer Deposition of PbS Thin Films at Low Temperaturescitations
- 2019Crystalline tungsten sulfide thin films by atomic layer deposition and mild annealingcitations
- 2019Atomic Layer Deposition of Emerging 2D Semiconductors, HfS2 and ZrS2, for Optoelectronicscitations
- 2016Electric and Magnetic Properties of ALD-Grown BiFeO3 Filmscitations
- 2016Atomic Layer Deposition of Iridium Thin Films Using Sequential Oxygen and Hydrogen Pulsescitations
- 2016Nucleation and conformality of iridium and iridium oxide thin films grown by atomic layer depositioncitations
- 2007Critical temperature modification of low dimensional superconductors by spin dopingcitations
Places of action
Organizations | Location | People |
---|
article
Atomic Layer Deposition of CsI and CsPbI3
Abstract
Cesium iodide (CsI) is a well-established scintillator material that also serves as a precursor for all-inorganic halide perovskite solar absorbers, such as CsPbI3. However, the lack of conformal and scalable methods to deposit halide perovskite thin films remains a major challenge on their way to commercialization. In this work, we employ atomic layer deposition (ALD) as the key method due to its inherent scalability to large areas and complex-shaped surfaces. We demonstrate two new ALD processes for the deposition of CsI and CsPbI3 thin films. The CsI process relies on cesium bis(trimethylsilyl) amide (Cs(btsa)) and tin(IV) iodide (SnI4) as precursors and yields high-purity, uniform, and phase-pure thin films. This process works in a wide temperature range (140-350 degrees C) and exhibits a large growth per cycle value (GPC) of 3.3 angstrom (85% of a CsI monolayer). Furthermore, we convert CsI into CsPbI3 perovskite by exposing a CsI film to our earlier PbI2 ALD process. We demonstrate the deposition of phase-pure gamma- or delta-CsPbI3 perovskite thin films, depending on the applied deposition temperature and number of PbI2 cycles. We believe that the ALD-based approach described in this work will offer a viable alternative for depositing perovskite thin films in applications that involve complex high aspect ratio structures or large substrate areas. ; Peer reviewed