Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bliem, Roland

  • Google
  • 14
  • 68
  • 272

University of Amsterdam

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (14/14 displayed)

  • 2024Bridging the gap between high-entropy alloys and metallic glasses:Control over disorder and mechanical properties of coatingscitations
  • 2023Femtosecond Laser-Induced Emission of Coherent Terahertz Pulses from Ruthenium Thin Films2citations
  • 2023Identifying silicides via plasmon loss satellites in photoemission of the Ru-Si system2citations
  • 2023Why Teflon is so slippery while other polymers are not4citations
  • 2022Electronic and structural properties of crystalline and amorphous (TaNbHfTiZr)C from first principles1citations
  • 2022Electronic and structural properties of crystalline and amorphous (TaNbHfTiZr)C from first principles1citations
  • 2022Ultrathin, sputter-deposited, amorphous alloy films of ruthenium and molybdenum3citations
  • 2022Ultrathin, sputter-deposited, amorphous alloy films of ruthenium and molybdenum3citations
  • 2021The influence of corrosion on diamond-like carbon topography and friction at the nanoscale11citations
  • 2021Hf deposition stabilizes the surface chemistry of perovskite manganite oxide20citations
  • 2021Tuning point defects by elastic strain modulates nanoparticle exsolution on perovskite oxides63citations
  • 2020Thermally driven interfacial degradation between Li7La3Zr2O12 electrolyte and LiNi0.6Mn0.2Co0.2O2 cathode45citations
  • 2020Shape-Preserving Chemical Conversion of Architected Nanocomposites26citations
  • 2015Adsorption and incorporation of transition metals at the magnetite Fe3O4(001) surface91citations

Places of action

Chart of shared publication
Troglia, Alessandro
3 / 3 shared
Kooi, Bart J.
2 / 29 shared
Van De Poll, Mike L.
1 / 1 shared
Morscher, Christoph
1 / 1 shared
Weber, Bart
1 / 1 shared
Leriche, Cyrian
1 / 1 shared
Ten Brink, Gert H.
1 / 32 shared
Planken, P.
1 / 2 shared
Troglia, A.
2 / 6 shared
Druten, K. Van
1 / 1 shared
Cruciani, L.
1 / 2 shared
Vliet, S. Van
3 / 3 shared
Olsson, Emilia
1 / 6 shared
Hogenelst, T.
1 / 1 shared
Bonn, D.
1 / 34 shared
Terwisscha-Dekker, H.
1 / 1 shared
Weber, B.
2 / 17 shared
Hogenelst, Tadeus
2 / 2 shared
Dohnalová, Kateřina
2 / 2 shared
Linden, Bram Van Der
1 / 1 shared
Morice, Corentin
2 / 2 shared
Kooi, Bart Jan
1 / 74 shared
Vliet, Stefan Van
1 / 1 shared
Momand, Jamo
2 / 22 shared
Frenken, Joost W. M.
2 / 8 shared
Yetik, Görsel
2 / 2 shared
Farokhipoor, Saeedeh
2 / 4 shared
Van Vliet, Stefan
1 / 1 shared
Franklin, S. E.
1 / 3 shared
Hsia, F.-C.
1 / 3 shared
Elam, F. M.
1 / 3 shared
Yang, L.
1 / 25 shared
Kim, D.
2 / 13 shared
Yildiz, B.
3 / 4 shared
Wang, J.
2 / 86 shared
Crumlin, E. J.
1 / 1 shared
Waluyo, I.
2 / 3 shared
Gallet, J.-J.
1 / 2 shared
Yang, J.
1 / 37 shared
Opitz, A. K.
1 / 1 shared
Dimitrakopoulos, G.
1 / 1 shared
Nenning, A.
1 / 1 shared
Hunt, A.
2 / 6 shared
Bowman, W.
1 / 1 shared
Wright, J. T.
1 / 2 shared
Vardar, G.
1 / 2 shared
Katsoudas, J. P.
1 / 2 shared
Kim, Y.
1 / 16 shared
Hecke, M. Van
1 / 2 shared
Ronda-Lloret, M.
1 / 3 shared
Hendrikse, H. C.
1 / 5 shared
Li, L.
1 / 90 shared
Shiju, N. Raveendran
1 / 5 shared
Noorduin, W. L.
1 / 10 shared
Weijden, A. Van Der
1 / 1 shared
Yang, T.
1 / 3 shared
Gamba, Oscar
1 / 2 shared
Schulte, Karina
1 / 11 shared
Osiecki, Jacek
1 / 3 shared
Gerhold, Stefan
1 / 1 shared
Wang, Zhiming
1 / 2 shared
Diebold, Ulrike
1 / 4 shared
Parkinson, Gareth S.
1 / 3 shared
Pavelec, Jiri
1 / 1 shared
Wagner, Margareta
1 / 1 shared
Schmid, Michael
1 / 9 shared
Blaha, Peter
1 / 3 shared
Mcdermott, Eamon
1 / 1 shared
Chart of publication period
2024
2023
2022
2021
2020
2015

Co-Authors (by relevance)

  • Troglia, Alessandro
  • Kooi, Bart J.
  • Van De Poll, Mike L.
  • Morscher, Christoph
  • Weber, Bart
  • Leriche, Cyrian
  • Ten Brink, Gert H.
  • Planken, P.
  • Troglia, A.
  • Druten, K. Van
  • Cruciani, L.
  • Vliet, S. Van
  • Olsson, Emilia
  • Hogenelst, T.
  • Bonn, D.
  • Terwisscha-Dekker, H.
  • Weber, B.
  • Hogenelst, Tadeus
  • Dohnalová, Kateřina
  • Linden, Bram Van Der
  • Morice, Corentin
  • Kooi, Bart Jan
  • Vliet, Stefan Van
  • Momand, Jamo
  • Frenken, Joost W. M.
  • Yetik, Görsel
  • Farokhipoor, Saeedeh
  • Van Vliet, Stefan
  • Franklin, S. E.
  • Hsia, F.-C.
  • Elam, F. M.
  • Yang, L.
  • Kim, D.
  • Yildiz, B.
  • Wang, J.
  • Crumlin, E. J.
  • Waluyo, I.
  • Gallet, J.-J.
  • Yang, J.
  • Opitz, A. K.
  • Dimitrakopoulos, G.
  • Nenning, A.
  • Hunt, A.
  • Bowman, W.
  • Wright, J. T.
  • Vardar, G.
  • Katsoudas, J. P.
  • Kim, Y.
  • Hecke, M. Van
  • Ronda-Lloret, M.
  • Hendrikse, H. C.
  • Li, L.
  • Shiju, N. Raveendran
  • Noorduin, W. L.
  • Weijden, A. Van Der
  • Yang, T.
  • Gamba, Oscar
  • Schulte, Karina
  • Osiecki, Jacek
  • Gerhold, Stefan
  • Wang, Zhiming
  • Diebold, Ulrike
  • Parkinson, Gareth S.
  • Pavelec, Jiri
  • Wagner, Margareta
  • Schmid, Michael
  • Blaha, Peter
  • Mcdermott, Eamon
OrganizationsLocationPeople

article

Tuning point defects by elastic strain modulates nanoparticle exsolution on perovskite oxides

  • Waluyo, I.
  • Gallet, J.-J.
  • Yang, J.
  • Yildiz, B.
  • Wang, J.
  • Opitz, A. K.
  • Dimitrakopoulos, G.
  • Bliem, Roland
  • Nenning, A.
  • Hunt, A.
  • Bowman, W.
Abstract

Exsolution generates stable and catalytically active metal nanoparticles via phase precipitation out of a host oxide. An ability to control the size and dispersion of the exsolution particles is desirable for design of nanostructured (electro)catalysts. Here, we demonstrate that tuning point defects by lattice strain affects both the thermodynamics and the kinetics of iron (Fe o ) exsolution on La 0.6 Sr 0.4 FeO 3 (LSF) thin film model. By combining in situ surface characterization and ab initio defect modeling, we show oxygen vacancy and Schottky defects to be the primary point defects formed upon Fe o exsolution. Lattice strain tunes the formation energy, and thus the abundance of these defects, and alters the amount and size of the resulting exsolution particles. In addition, we find that the density of exsolved nanoparticles matches the concentration of oxygen vacancy pairs, thus pointing to the surface oxygen vacancy pairs as preferential nucleation sites for exsolution. The tensile-strained LSF with a facile formation of these critical point defects results in a higher Fe o metal concentration, a larger density of nanoparticles, and a reduced particle size at its surfaces. These results provide important mechanistic insights and highlight the role of point-defect engineering in designing nanostructured catalysts in energy and fuel conversion technologies.

Topics
  • nanoparticle
  • density
  • perovskite
  • impedance spectroscopy
  • dispersion
  • surface
  • phase
  • thin film
  • Oxygen
  • precipitation
  • iron
  • vacancy
  • point defect