People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Obrien, Nathan J.
Linköping University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Hexacoordinated Gallium(III) Triazenide Precursor for Epitaxial Gallium Nitride by Atomic Layer Deposition
Abstract
Gallium nitride (GaN) is the main component of modern-day high electron mobility transistors due to its favorable electronic properties. As electronic devices become smaller with more complex surface architecture, the ability to deposit high-quality GaN films at low temperatures is required. Herein, we report a new highly volatile Ga(III) triazenide precursor and demonstrate its ability to deposit high-quality epitaxial GaN by atomic layer deposition (ALD). This new Ga(III) triazenide, the first hexacoordinated Ga–N bonded precursor used in a vapor deposition process, was easily synthesized and purified by either sublimation or recrystallisation. Thermogravimetric analysis showed single-step volatilization with an onset temperature of 155 °C and negligible residual mass. Three temperature intervals with self-limiting growth were observed when depositing GaN films. The GaN films grown in the second growth interval at 350 °C were epitaxial on 4H–SiC without an AlN seed layer and found to have a near stoichiometric Ga/N ratio with very low levels of impurities. In addition, electron microstructure analysis showed a smooth film surface and a sharp interface between the substrate and film. The band gap of these films was 3.41 eV with the Fermi level at 1.90 eV, showing that the GaN films were unintentionally n-type-doped. This new triazenide precursor enables ALD of GaN for semiconductor applications and provides a new Ga(III) precursor for future deposition processes.