Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ray, Debmalya

  • Google
  • 5
  • 36
  • 652

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2021Tuning the Conductivity of Hexa-Zirconium(IV) Metal-Organic Frameworks by Encapsulating Heterofullerenes23citations
  • 2020Insights into the structure−activity relationships in metal−Organic framework-supported nickel catalysts for ethylene hydrogenation51citations
  • 2018A porous, electrically conductive hexa-zirconium(iv) metal-organic framework176citations
  • 2018Computational Study of Structural and Electronic Properties of Lead-Free CsMI3 Perovskites (M = Ge, Sn, Pb, Mg, Ca, Sr, and Ba)82citations
  • 2017Methane Oxidation to Methanol Catalyzed by Cu-Oxo Clusters Stabilized in NU-1000 Metal-Organic Framework320citations

Places of action

Chart of shared publication
Goswami, Subhadip
2 / 2 shared
Duan, Jiaxin
1 / 1 shared
Hupp, Joseph T.
4 / 18 shared
Gagliardi, Laura
4 / 16 shared
Yang, Ying
1 / 12 shared
Wang, Xingjie
1 / 3 shared
Farha, Omar K.
3 / 23 shared
Wasson, Megan C.
1 / 2 shared
Lyu, Jiafei
1 / 1 shared
Li, Zhong
1 / 3 shared
Pandharkar, Riddhish
1 / 2 shared
Zhang, Xuan
1 / 3 shared
Liu, Jian
1 / 26 shared
Islamoglu, Timur
2 / 10 shared
Kato, Satoshi
1 / 1 shared
Otake, Ken Ichi
1 / 2 shared
Atilgan, Ahmet
1 / 2 shared
Kung, Chung Wei
1 / 1 shared
Garibay, Sergio J.
1 / 1 shared
Cui, Yuexing
1 / 1 shared
Aydil, Eray S.
1 / 9 shared
Pham, Hung Q.
1 / 1 shared
Borycz, Joshua
1 / 3 shared
Clark, Catherine
1 / 1 shared
Lercher, Johannes A.
1 / 7 shared
Zheng, Jian
1 / 12 shared
Camaioni, Donald M.
1 / 4 shared
Sanchez-Sanchez, Maricruz
1 / 2 shared
Vjunov, Aleksei
1 / 5 shared
Fulton, John L.
1 / 5 shared
Ikuno, Takaaki
1 / 1 shared
Pahls, Dale R.
1 / 1 shared
Browning, Nigel D.
1 / 13 shared
Ortuño, Manuel A.
1 / 2 shared
Mehdi, B. Layla
1 / 7 shared
Li, Zhanyong
1 / 9 shared
Chart of publication period
2021
2020
2018
2017

Co-Authors (by relevance)

  • Goswami, Subhadip
  • Duan, Jiaxin
  • Hupp, Joseph T.
  • Gagliardi, Laura
  • Yang, Ying
  • Wang, Xingjie
  • Farha, Omar K.
  • Wasson, Megan C.
  • Lyu, Jiafei
  • Li, Zhong
  • Pandharkar, Riddhish
  • Zhang, Xuan
  • Liu, Jian
  • Islamoglu, Timur
  • Kato, Satoshi
  • Otake, Ken Ichi
  • Atilgan, Ahmet
  • Kung, Chung Wei
  • Garibay, Sergio J.
  • Cui, Yuexing
  • Aydil, Eray S.
  • Pham, Hung Q.
  • Borycz, Joshua
  • Clark, Catherine
  • Lercher, Johannes A.
  • Zheng, Jian
  • Camaioni, Donald M.
  • Sanchez-Sanchez, Maricruz
  • Vjunov, Aleksei
  • Fulton, John L.
  • Ikuno, Takaaki
  • Pahls, Dale R.
  • Browning, Nigel D.
  • Ortuño, Manuel A.
  • Mehdi, B. Layla
  • Li, Zhanyong
OrganizationsLocationPeople

article

Tuning the Conductivity of Hexa-Zirconium(IV) Metal-Organic Frameworks by Encapsulating Heterofullerenes

  • Goswami, Subhadip
  • Ray, Debmalya
  • Duan, Jiaxin
  • Hupp, Joseph T.
  • Gagliardi, Laura
Abstract

<p>Electrical conductivity in metal-organic frameworks (MOFs) has a great potential for energy storage applications and electrocatalysis. Zirconium-based MOFs such as NU-901 and NU-1000 have a low electrical conductivity due to the redox innocence of Zr-oxo bonds. Recently, it has been shown that the electrical conductivity of NU-901 can be increased by 11 orders of magnitude by physically encapsulating fullerene (C60) in its diamond pore. This effect is due to the host-guest interaction between the electron-rich 1,3,6,8-tetrakis(p-benzoate)pyrene (TBAPy4-) organic linkers of NU-901 (host) and the electron-poor fullerene (guest). Herein, we used density functional theory to study heterofullerene (C59X; X = B, Al, Ga, In, Si, Ge, and Sn) encapsulation in NU-901. Our study suggests that encapsulated heterofullerenes enhance the electrical conductivity of the NU-901 MOF even further than C60.</p>

Topics
  • density
  • impedance spectroscopy
  • pore
  • theory
  • zirconium
  • density functional theory
  • electrical conductivity