People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vehkamäki, Marko
University of Helsinki
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (41/41 displayed)
- 20243D-printed sensor electric circuits using atomic layer depositioncitations
- 2023Molecular layer deposition of hybrid silphenylene-based dielectric filmcitations
- 2023Atomic Layer Deposition of Boron-Doped Al2O3 Dielectric Filmscitations
- 2022Atomic layer deposition of GdF 3 thin filmscitations
- 2022Atomic layer deposition of GdF3 thin filmscitations
- 2022Atomic layer deposition of GdF3thin filmscitations
- 2022Atomic Layer Deposition of CsI and CsPbI3citations
- 2021Rhenium Metal and Rhenium Nitride Thin Films Grown by Atomic Layer Depositioncitations
- 2021Highly Material Selective and Self-Aligned Photo-assisted Atomic Layer Deposition of Copper on Oxide Materialscitations
- 2021Atomic Layer Deposition of Rhenium Disulfidecitations
- 2020Photoassisted atomic layer deposition of oxides employing alkoxides as single-source precursorscitations
- 2020Atomic Layer Deposition of PbS Thin Films at Low Temperaturescitations
- 2019As2S3 thin films deposited by atomic layer depositioncitations
- 2019Photoassisted atomic layer deposition of oxides employing alkoxides as single-source precursorscitations
- 2019Photoassisted atomic layer deposition of oxides employing alkoxides as single-source precursorscitations
- 2019Atomic Layer Deposition of PbI₂ Thin Filmscitations
- 2019Atomic Layer Deposition of Emerging 2D Semiconductors, HfS2 and ZrS2, for Optoelectronicscitations
- 2019Toward epitaxial ternary oxide multilayer device stacks by atomic layer depositioncitations
- 2018Rhenium Metal and Rhenium Nitride Thin Films Grown by Atomic Layer Depositioncitations
- 2018Metal oxide multilayer hard mask system for 3D nanofabricationcitations
- 2018Atomic Layer Deposition of Zirconium Dioxide from Zirconium Tetraiodide and Ozonecitations
- 2018Atomic Layer Deposition of Rhenium Disulfidecitations
- 2017As2S3 thin films deposited by atomic layer depositioncitations
- 2017(Invited) Photo-Assisted ALDcitations
- 2016Electric and Magnetic Properties of ALD-Grown BiFeO3 Filmscitations
- 2016Atomic Layer Deposition of Iridium Thin Films Using Sequential Oxygen and Hydrogen Pulsescitations
- 2016Bismuth iron oxide thin films using atomic layer deposition of alternating bismuth oxide and iron oxide layerscitations
- 2015Atomic layer deposition of zirconium dioxide from zirconium tetrachloride and ozonecitations
- 2015(Et3Si)2Se as a precursor for atomic layer deposition: growth analysis of thermoelectric Bi2Se3citations
- 2015Impedance spectroscopy study of the unipolar and bipolar resistive switching states of atomic layer deposited polycrystalline ZrO2 thin filmscitations
- 2015Studies on atomic layer deposition of IRMOF-8 thin filmscitations
- 2015Selective etching of focused gallium ion beam implanted regions from silicon as a nanofabrication methodcitations
- 2015Atomic Layer Deposition and Characterization of Bi2Te3 Thin Filmscitations
- 2015(Et3Si)(2)Se as a precursor for atomic layer depositioncitations
- 2014Combining focused ion beam and atomic layer deposition in nanostructure fabricationcitations
- 2014Sealing of Hard CrN and DLC Coatings with Atomic Layer Depositioncitations
- 2014Metal oxide films
- 2011Corrosion Protection of Steel with Oxide Nanolaminates Grown by Atomic Layer Depositioncitations
- 2007Degradation effects in TlBr single crystals under prolonged bias voltagecitations
- 2006Atomic layer deposition of ferroelectric bismuth titanate Bi4Ti3O12 thin filmscitations
- 2005New approach to the ALD of Bismuth silicatescitations
Places of action
Organizations | Location | People |
---|
article
Atomic Layer Deposition of PbS Thin Films at Low Temperatures
Abstract
Lataa oa-julkaisu, kun saatavilla ; Atomic layer deposition (ALD) is a viable method for depositing functional, passivating, and encapsulating layers on top of halide perovskites. Studies in that area have only focused on metal oxides, despite a great number of materials that can be made with ALD. This work demonstrates that, in addition to oxides, other ALD processes can be compatible with the perovskites. We describe two new ALD processes for lead sulfide. These processes operate at low deposition temperatures (45-155 °C) that have been inaccessible to previous ALD PbS processes. Our processes rely on volatile and reactive lead precursors Pb(dbda) (dbda = rac-N2,N3-di-tert-butylbutane-2,3-diamide) and Pb(btsa)2 (btsa = bis(trimethylsilyl)amide) as well as H2S. These precursors produce high quality PbS thin films that are uniform, crystalline, and pure. The films exhibit p-type conductivity and good mobilities of 10-70 cm2 V-1 s-1. Low deposition temperatures enable direct ALD of PbS onto a halide perovskite CH3NH3PbI3 (MAPI) without its decomposition. The stability of MAPI in ambient air is greatly improved by capping with ALD PbS. More generally, these new processes offer valuable alternatives for PbS-based devices, and we hope that this study will inspire more studies on ALD of non-oxides on halide perovskites. ; Peer reviewed