People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jalkanen, Pasi
University of Helsinki
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2023Conversion of ALD CuO Thin Films into Transparent Conductive p-Type CuI Thin Filmscitations
- 2023Hydrogen isotope exchange experiments in high entropy alloy WMoTaNbVcitations
- 2022Irradiation Damage Independent Deuterium Retention in WMoTaNbVcitations
- 2022Atomic layer deposition of PbCl2, PbBr2 and mixed lead halide (Cl, Br, I) PbXnY2-n thin filmscitations
- 2022Atomic Layer Deposition of CsI and CsPbI3citations
- 2020Preparation and In vivo Evaluation of Red Blood Cell Membrane Coated Porous Silicon Nanoparticles Implanted with 155Tbcitations
- 2020Atomic Layer Deposition of PbS Thin Films at Low Temperaturescitations
- 2019Crystalline tungsten sulfide thin films by atomic layer deposition and mild annealingcitations
- 2019Atomic Layer Deposition of Emerging 2D Semiconductors, HfS2 and ZrS2, for Optoelectronicscitations
- 2016Electric and Magnetic Properties of ALD-Grown BiFeO3 Filmscitations
- 2016Atomic Layer Deposition of Iridium Thin Films Using Sequential Oxygen and Hydrogen Pulsescitations
- 2016Nucleation and conformality of iridium and iridium oxide thin films grown by atomic layer depositioncitations
- 2007Critical temperature modification of low dimensional superconductors by spin dopingcitations
Places of action
Organizations | Location | People |
---|
article
Atomic Layer Deposition of PbS Thin Films at Low Temperatures
Abstract
Lataa oa-julkaisu, kun saatavilla ; Atomic layer deposition (ALD) is a viable method for depositing functional, passivating, and encapsulating layers on top of halide perovskites. Studies in that area have only focused on metal oxides, despite a great number of materials that can be made with ALD. This work demonstrates that, in addition to oxides, other ALD processes can be compatible with the perovskites. We describe two new ALD processes for lead sulfide. These processes operate at low deposition temperatures (45-155 °C) that have been inaccessible to previous ALD PbS processes. Our processes rely on volatile and reactive lead precursors Pb(dbda) (dbda = rac-N2,N3-di-tert-butylbutane-2,3-diamide) and Pb(btsa)2 (btsa = bis(trimethylsilyl)amide) as well as H2S. These precursors produce high quality PbS thin films that are uniform, crystalline, and pure. The films exhibit p-type conductivity and good mobilities of 10-70 cm2 V-1 s-1. Low deposition temperatures enable direct ALD of PbS onto a halide perovskite CH3NH3PbI3 (MAPI) without its decomposition. The stability of MAPI in ambient air is greatly improved by capping with ALD PbS. More generally, these new processes offer valuable alternatives for PbS-based devices, and we hope that this study will inspire more studies on ALD of non-oxides on halide perovskites. ; Peer reviewed