Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ghasemian, Mohammad B.

  • Google
  • 9
  • 37
  • 585

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2023Coating of gallium-based liquid metal particles with molybdenum oxide and oxysulfide for electronic band structure modulation11citations
  • 2023A liquid metal-polydopamine composite for cell culture and electro-stimulation12citations
  • 2020Pulsing liquid alloys for nanomaterials synthesis58citations
  • 2020Pulsing liquid alloys for nanomaterials synthesis58citations
  • 2020Nucleation and growth of polyaniline nanofibers onto liquid metal nanoparticles86citations
  • 2020Nucleation and growth of polyaniline nanofibers onto liquid metal nanoparticles86citations
  • 2020Liquid metal-based synthesis of high performance monolayer SnS piezoelectric nanogenerators164citations
  • 2020Carbonization of low thermal stability polymers at the interface of liquid metals9citations
  • 2019Advantages of eutectic alloys for creating catalysts in the realm of nanotechnology-enabled metallurgy101citations

Places of action

Chart of shared publication
Allioux, Francois-Marie
1 / 3 shared
Zavabeti, Ali
1 / 7 shared
Wang, Yifang
3 / 3 shared
Allioux, Francois Marie
6 / 7 shared
Yang, Jiong
3 / 5 shared
Ireland, Jake
1 / 1 shared
Abbasi, Roozbeh
3 / 6 shared
Kalantar-Zadeh, Kourosh
6 / 20 shared
Mayyas, Mohannad
6 / 9 shared
Centurion, Franco
1 / 2 shared
Merhebi, Salma
2 / 3 shared
Liu, Li
1 / 3 shared
Biazik, Joanna M.
1 / 1 shared
Xie, Wanjie
1 / 1 shared
Zhang, Chengchen
6 / 8 shared
Mousavi, Maedehsadat
3 / 3 shared
Tang, Jianbo
6 / 12 shared
Rahim, Md Arifur
4 / 6 shared
Christoe, Michael J.
2 / 3 shared
Esrafilzadeh, Dorna
4 / 5 shared
Rahim, M. Arifur
2 / 2 shared
Jalili, Rouhollah
2 / 2 shared
Han, Jialuo
4 / 7 shared
Li, Hongzhe
2 / 2 shared
Omullane, Anthony P.
1 / 6 shared
Le-Clech, Pierre
2 / 2 shared
Kaner, Richard B.
2 / 4 shared
Daeneke, Torben
2 / 14 shared
Tang, Shi Yang
1 / 2 shared
Lim, Sean
1 / 5 shared
Hyde, Lachlan
1 / 3 shared
Zhang, Jin
1 / 24 shared
Merenda, Andrea
1 / 6 shared
Maghe, Maxime
1 / 3 shared
Cunning, Benjamin V.
1 / 2 shared
Ruoff, Rodney S.
1 / 4 shared
Cai, Shengxiang
1 / 2 shared
Chart of publication period
2023
2020
2019

Co-Authors (by relevance)

  • Allioux, Francois-Marie
  • Zavabeti, Ali
  • Wang, Yifang
  • Allioux, Francois Marie
  • Yang, Jiong
  • Ireland, Jake
  • Abbasi, Roozbeh
  • Kalantar-Zadeh, Kourosh
  • Mayyas, Mohannad
  • Centurion, Franco
  • Merhebi, Salma
  • Liu, Li
  • Biazik, Joanna M.
  • Xie, Wanjie
  • Zhang, Chengchen
  • Mousavi, Maedehsadat
  • Tang, Jianbo
  • Rahim, Md Arifur
  • Christoe, Michael J.
  • Esrafilzadeh, Dorna
  • Rahim, M. Arifur
  • Jalili, Rouhollah
  • Han, Jialuo
  • Li, Hongzhe
  • Omullane, Anthony P.
  • Le-Clech, Pierre
  • Kaner, Richard B.
  • Daeneke, Torben
  • Tang, Shi Yang
  • Lim, Sean
  • Hyde, Lachlan
  • Zhang, Jin
  • Merenda, Andrea
  • Maghe, Maxime
  • Cunning, Benjamin V.
  • Ruoff, Rodney S.
  • Cai, Shengxiang
OrganizationsLocationPeople

article

Nucleation and growth of polyaniline nanofibers onto liquid metal nanoparticles

  • Ghasemian, Mohammad B.
  • Le-Clech, Pierre
  • Allioux, Francois Marie
  • Esrafilzadeh, Dorna
  • Zhang, Chengchen
  • Kalantar-Zadeh, Kourosh
  • Mayyas, Mohannad
  • Tang, Jianbo
  • Kaner, Richard B.
  • Daeneke, Torben
  • Han, Jialuo
  • Rahim, Md Arifur
Abstract

<p>Liquid metals can play an essential role in the generation of electrically conductive composites for electronic devices and environmental sensing and remediation applications. Here, a method for growing a polyaniline nanofibrous network at liquid metal nanoparticle interfaces is demonstrated for generating hybrid liquid metal-polymer nanocomposites. The investigation shows that an initial functionalization step of the liquid metal nanoparticles with a polymerization enhancer is essential for providing stable and specific nucleation points for the formation of the polyaniline nanofibrous network. The acidity and mechanical agitation conditions are carefully adjusted to control the fibrous polyaniline. The embedded gallium elements form an initial seeding layer around the liquid metal nanoparticles. The novel nanocomposites offer synergistic properties for environmental sensing and molecular separation applications. This study provides a road map for the direct synthesis of long organic molecular chains at the dynamic interfaces of liquid metals.</p>

Topics
  • nanoparticle
  • nanocomposite
  • impedance spectroscopy
  • polymer
  • functionalization
  • Gallium