People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Beyer, Andreas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Excitons in epitaxially grown WS2 on Graphene: a nanometer-resolved EELS and DFT study
- 2024A Small Step for Epitaxy, a Large Step Toward Twist Angle Control in 2D Heterostructurescitations
- 2023Kinking of GaP Nanowires Grown in an In Situ (S)TEM Gas Cell Holdercitations
- 2022Understanding the formation of antiphase boundaries in layered oxide cathode materials and their evolution upon electrochemical cycling
- 2022Advanced Analytical Characterization of Interface Degradation in Ni-Rich NCM Cathode Co-Sintered with LATP Solid Electrolytecitations
- 2021Understanding the formation of antiphase boundaries in layered oxide cathode materials and their evolution upon electrochemical cyclingcitations
- 2020Self-assembly of nanovoids in Si microcrystals epitaxially grown on deeply patterned substratescitations
- 2016INFLUENCE OF THE COOLING RATE AND THE BLEND RATIO ON THE PHYSICAL STABILTIY OF CO-AMORPHOUS NAPROXEN/INDOMETHACINcitations
- 2014Bipolar electric-field enhanced trapping and detrapping of mobile donors in BiFeO3 memristorscitations
Places of action
Organizations | Location | People |
---|
article
Self-assembly of nanovoids in Si microcrystals epitaxially grown on deeply patterned substrates
Abstract
We present an experimental and theoretical analysis of the formation of nanovoids within Si microcrystals epitaxially grown on Si patterned substrates. The growth conditions leading to the nucleation of nanovoids have been highlighted, and the roles played by the deposition rate, substrate temperature, and substrate pattern geometry are identified. By combining various scanning and transmission electron microscopy techniques, it has been possible to link the appearance pits of a few hundred nanometer width at the microcrystal surface with the formation of nanovoids within the crystal volume. A phase-field model, including surface diffusion and the flux of incoming material with shadowing effects, reproduces the qualitative features of the nanovoid formation thereby opening new perspectives for the bottom-up fabrication of 3D semiconductors microstructures.