People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ahlburg, Jakob Voldum
Aarhus University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2022In-depth investigations of size and occupancies in cobalt ferrite nanoparticles by joint Rietveld refinements of X-ray and neutron powder diffraction datacitations
- 2022Combined characterization approaches to investigate magnetostructural effects in exchange-spring ferrite nanocomposite magnetscitations
- 2021Synthesis and Characterization of a Magnetic Ceramic Using an Easily Accessible Scale Setupcitations
- 2020Exploring the direct synthesis of exchange-spring nanocomposites by reduction of CoFe 2 O 4 spinel nanoparticles using in situ neutron diffractioncitations
- 2020Exploring the direct synthesis of exchange-spring nanocomposites by reduction of CoFe2O4 spinel nanoparticles using in situ neutron diffractioncitations
- 2020Realising Sample Environments for X-ray and Neutron Powder Diffraction
- 2020Ultra-Fast Heating – Induction furnace for POLARIS
- 2019Novel fast heating furnaces for in situ powder neutron diffraction
- 2019Structure and magnetic properties of W-type hexaferritescitations
- 2019Magnetostructural effects in exchange-spring nanocomposite magnets probed by combined X-ray & neutron scattering
- 2019Novel in situ powder neutron diffraction setups – The creation of a modern magnetic compound
- 2019Air-heated solid–gas reaction setup for in situ neutron powder diffractioncitations
- 2019In Situ In-House Powder X-ray Diffraction Study of Zero-Valent Copper Formation in Supercritical Methanolcitations
- 2019In Situ In-House Powder X-ray Diffraction Study of Zero-Valent Copper Formation in Supercritical Methanolcitations
- 2019Laboratory setup for rapid in situ powder X-ray diffraction elucidating Ni particle formation in supercritical methanolcitations
- 2018X-ray and neutron diffraction magnetostructural investigations on exchange-coupled nanocomposite magnets
- 2018Koercivitetsforbedring af strontium hexaferrit nano-krystallitter gennem morfologikontrolleret udglødning. ; Coercivity enhancement of strontium hexaferrite nano-crystallites through morphology controlled annealingcitations
- 2018Approaching Ferrite-Based Exchange-Coupled Nanocomposites as Permanent Magnetscitations
- 2018Coercivity enhancement of strontium hexaferrite nano-crystallites through morphology controlled annealingcitations
- 2017Optimization of spring exchange coupled ferrites, studied by in situ neutron diffraction.
- 2015Particle size optimization of SrFe12O19 magnetic nanoparticles
Places of action
Organizations | Location | People |
---|
article
In Situ In-House Powder X-ray Diffraction Study of Zero-Valent Copper Formation in Supercritical Methanol
Abstract
Nano/micro crystalline copper is widely used in catalysts and it has potential for being used as conductive additive to ink for inkjet printed electronics. Copper is attractive, because it has excellent electrical conductivity and low cost compared to noble metals. The nucleation and phase transitions from the precursor to the final micrometer sized Cu in supercritical methanol have been studied for the first time using in-house in situ powder X-ray diffraction (PXRD). Temperatures have a significant impact on the reduction process of Cu2+, at low synthesis temperature (250 °C), it was observed how the Cu2+ precursor initially formed copper hydroxy nitrate (Cu2(OH)3NO3) and transformed to copper(II)oxide (CuO) i.e no reduction took place. At 300 °C multiple phase transformation could be observed from initial copper hydroxy nitrate to zero-valent copper, the in situ investigations reveal the following reaction scheme; CuII2(OH)3NO3 → CuIIO → CuI2O → Cu0. Increasing the synthesis temperature causes the pure Cu0 to form much faster; at 350 °C, it takes 8.7 min to produce phase pure Cu0, while at 450 °C, the formation takes ∼0.7 min. Increasing the initial concentration of Cu2+ in the precursor causes formation of larger Cu0 crystallites in the final product. Finally, the in situ observations were used as guidance for making Cu0 using a supercritical flow setup.